Journal of the Korean Data and Information Science Society
/
v.19
no.3
/
pp.751-759
/
2008
Mixtures of factor analyzers(MFA) is useful to model the distribution of high-dimensional data on much lower dimensional space where the number of observations is very large relative to their dimension. Mixtures of common factor analyzers(MCFA) can reduce further the number of parameters in the specification of the component covariance matrices as the number of classes is not small. Moreover, the factor scores of MCFA can be displayed in low-dimensional space to distinguish the groups. We propose the factor scores of MCFA as new low-dimensional features for classification of high-dimensional data. Compared with the conventional dimension reduction methods such as principal component analysis(PCA) and canonical covariates(CV), the proposed factor score was shown to have higher correct classification rates for three real data sets when it was used in parametric and nonparametric classifiers.
Journal of Agricultural Extension & Community Development
/
v.16
no.3
/
pp.557-586
/
2009
The objective is to find the classification criteria between urban and rural, and to classify the urban and rural area all the country in Korea. For the research objectives, reviews of related literature and statistical yearbooks were used for finding criteria and analysing data. Through reviewing the literature, some indicators were selected in views of rurality and urbanity, and gathered the data from statistical yearbooks. And factor analysis was used to find first and second factor for classifying region. Six factors as a city surrounding(36%), non-farmer household population ratio(28.1%), cultivated acreage(12.48%), agricultural production surrounding (12.40%), the farm family number change(5.58%) and household number rise and fall(5.54%) were finding. And rurality factors were cultivated acreage, agricultural production surrounding, the farm family number change and household number rise and fall, and urbanity factors were city surrounding and non-farmer household population ratio. Based on the first and second factor loaded amount, four type regional classification was followed.
The purposes of this study lied in the analysis and classification of neck-base circumference shapes of the women in their twenties, by the application of three-dimensional automatic measurement data of human body, and thereby in the understanding of neck-base circumference shapes by the classified type. The findings are as follows: 1. The comparison of three-dimensional human body measurement items relating to the neck-base circumference part of the women in their twenties indicated that the largest individual difference was found in cervicale-center-anterior neck radius than in other items. 2. The factor analysis, which was conducted to extract the factors constituting the neck-base circumference, showed the shape of cervicale(factor 1), the shape of section neck(factor 2), the thickness of neck(factor 3), the shape of anterior neck(factor 4), and the shape of side neck(factor 5). 3. The classification of the neck-base circumference shapes resulted in three types. Type 1 was the shape of a reverse triangle hanging forward, Type 2 was that of a circle, and Type 3 was that of an oval open to the sides.
Journal of the Korean Data and Information Science Society
/
v.23
no.2
/
pp.235-245
/
2012
Logistic discrimination is an useful statistical technique for quantitative analysis of financial service industry. Especially it is not only easy to be implemented, but also has good classification rate. Generalized additive model is useful for credit scoring since it has the same advantages of logistic discrimination as well as accounting ability for the nonlinear effects of the explanatory variables. It may, however, need too many additive terms in the model when the number of explanatory variables is very large and there may exist dependencies among the variables. Mixtures of factor analyzers can be used for dimension reduction of high-dimensional feature. This study proposes to use the low-dimensional factor scores of mixtures of factor analyzers as the new features in the generalized additive model. Its application is demonstrated in the classification of some real credit scoring data. The comparison of correct classification rates of competing techniques shows the superiority of the generalized additive model using factor scores.
This paper presents a factor-analysis based questionnaire categorization method to improve the reliability of the evaluation of working conditions without influencing the completeness of the questionnaire both in Taiwanese and Chinese construction enterprises for structural engineering applications. The proposed approach springs from the AI application and expert systems in structural engineering. Questions with a similar response pattern are grouped into or categorized as one factor. Questions that form a single factor usually have higher reliability than the entire questionnaire, especially in the case when the questionnaire is complex and inconsistent. By classifying questions based on the meanings of the words used in them and the responded scores, reliability could be increased. The principle for classification was that 90% of the questions in the same classified group must satisfy the proposed classification rule and consequently the lowest one was 92%. The results show that the question classification method could improve the reliability of the questionnaires for at least 0.7. Compared to the question deletion method using SPSS, 75% of the questions left were verified the same as the results obtained by applying the classification method.
The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.
This research is to the establishment of a conceptual framework that supports road characteristic classification from a new point of view in order to complement of the existing road functional classification and examine of traffic pattern. The road characteristic classification(RCC) is expected to use important performance criteria that produced a policy guidelines for transportation planning and operational management. For this study, the traffic data used the permanent traffic counters(PTCs) located within the national highway between 2002 and 2006. The research has described for a systematic review and assessment of how exploratory factor analysis should be applied from 12 explanatory variables. The optimal number of components and clusters are determined by interpretation of the factor analysis results. As a result, the scenario including all 12 explanatory variables is better than other scenarios. The four components is produced the optimal number of factors. This research made contributions to the understanding of the exploratory factor analysis for the road characteristic classification, further applying the objective input data for various analysis method, such as cluster analysis, regression analysis and discriminant analysis.
Purpose: This study was conducted in order to investigate the effect of motor ability on mastery motivation in children with cerebral palsy. Methods: Sixty children with cerebral palsy (5~12 years) and their parents participated in the study. Data on general characteristics and disability condition, Gross Motor Functional Classification System, Manual Ability Classification System, and The Dimensions of Mastery questionnaire were collected for this study. Independent t-test, and ANOVA were used for analysis of the effect of The Dimensions of Mastery questionnaire according to general and disability condition, Gross Motor Functional Classification System, and Manual Ability Classification System. Linear regression analysis was performed to determine the effects of Gross Motor Functional Classification System and Manual Ability Classification System on The Dimensions of Mastery questionnaire. SPSS win. 22.0 was used and Tukey was used for post hoc analysis, level of statistical significance was less than 0.05. Results: The Dimensions of Mastery questionnaire score showed statistically significant difference according to gender, region, type, disability rating, Gross Motor Functional Classification System, and Manual Ability Classification System (p<0.05). Gross Motor Functional Classification System and Manual Ability Classification System were the effect factor on The Dimensions of Mastery questionnaire significantly (p<0.05). Conclusion: These results suggest that motor ability of children with cerebral palsy was an important factor having an effect on The Dimensions of Mastery questionnaire.
Journal of Korean Society for Geospatial Information Science
/
v.19
no.4
/
pp.139-144
/
2011
This study proposed a classification method of LIDAR data by using simultaneously the color information (R, G, B) and reflection intensity information (I) obtained from terrestrial LIDAR and by analyzing the association between these data through the use of statistical classification methods. To this end, first, the factors that maximize variance were calculated using the variables, R, G, B, and I, whereby the factor matrix between the principal factor and each variable was calculated. However, although the factor matrix shows basic data by reducing them, it is difficult to know clearly which variables become highly associated by which factors; therefore, Varimax method from orthogonal rotation was used to obtain the factor matrix and then the factor scores were calculated. And, by using a non-hierarchical clustering method, K-mean method, a cluster analysis was performed on the factor scores obtained via K-mean method as factor analysis, and afterwards the classification accuracy of the terrestrial LiDAR data was evaluated.
Proactive assessment of landslide susceptibility is necessary for minimizing casualties. This study proposes a methodology for classifying the landslide safety factor using a classification algorithm based on machine learning techniques. The high-risk area model is adopted to perform the classification and eight geotechnical parameters are adopted as inputs. Four classification algorithms-namely decision tree, k-nearest neighbor, logistic regression, and random forest-are employed for comparing classification accuracy for the safety factors ranging between 1.2 and 2.0. Notably, a high accuracy is demonstrated in the safety factor range of 1.2~1.7, but a relatively low accuracy is obtained in the range of 1.8~2.0. To overcome this issue, the synthetic minority over-sampling technique (SMOTE) is adopted to generate additional data. The application of SMOTE improves the average accuracy by ~250% in the safety factor range of 1.8~2.0. The results demonstrate that SMOTE algorithm improves the accuracy of classification algorithms when applied to geotechnical data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.