본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 얼굴 표정을 인식을 위한 특징벡터를 추출하는 새로운 방법을 제안하였다. 추출된 특징벡터는 얼굴 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는다. 얼굴 표정을 인식하기 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 두 과정으로 나뉘어진다. 특징벡터는 얼굴 화상에 대하여 추정된 깁스분포를 바탕으로 수정된 2-D 조건부 모멘트로 구성된다. 얼굴 표정인식 과정에서는 패턴인식에 널리 사용되는 이산형 HMM를 사용한다. 제안된 방법에 대한 성능평가를 위하여 4가지의 얼굴 표정 인식 실험을 Workstation에서 실험한 결과, 제안된 얼굴 표정 인식 방법이 95% 이상의 성능을 보여주었다.
얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.
In this paper, we proposed the Bi-Modal Sensor Fusion Algorithm which is the emotional recognition method that be able to classify 4 emotions (Happy, Sad, Angry, Surprise) by using facial image and speech signal together. We extract the feature vectors from speech signal using acoustic feature without language feature and classify emotional pattern using Neural-Network. We also make the feature selection of mouth, eyes and eyebrows from facial image. and extracted feature vectors that apply to Principal Component Analysis(PCA) remakes low dimension feature vector. So we proposed method to fused into result value of emotion recognition by using facial image and speech.
This paper proposes a method which analyzes facial shape and extracts positions of eyes regardless of the tilt and the size of input iamge. With the extracted feature parameters of facial element by the method, full human faces are recognized by a neural network which BP algorithm is applied on. Input image is changed into binary codes, and then labelled. Area, circumference, and circular degree of the labelled binary image are obtained by using chain code and defined as feature parameters of face image. We first extract two eyes from the similarity and distance of feature parameter of each facial element, and then input face image is corrected by standardizing on two extracted eyes. After a mask is genrated line historgram is applied to finding the feature points of facial elements. Distances and angles between the feature points are used as parameters to recognize full face. To show the validity learning algorithm. We confirmed that the proposed algorithm shows 100% recognition rate on both learned and non-learned data for 20 persons.
We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.
본 연구에서는 3차원 얼굴 데이타에서 인접 부위의 깊이 차를 이용하여 얼굴의 주요 특징을 추출해 내는 방법을 제안한다. 인간은 사물의 특정 부분의 깊이 정보를 인식하는데 있어서 인접 부위와의 깊이 정보를 비교하고, 이를 바탕으로 깊이 값에 의한 대조가 두드러진 정도에 따라 상대적으로 깊이가 깊고 얕음을 지각하게 된다. 이런 인식 원리를 얼굴의 특징 추출에 적용하여 간단한 연산 과정을 통해 신뢰성 있고, 빠른 얼굴의 특징 추출이 가능하다. 인접 부위의 깊이 차는 수평방향과 수직방향으로 각각 일정 거리를 둔 지점에서의 두 지점간의 깊이 차로 생성된다. 생성된 수평, 수직 방향으로 인접 깊이 차와 입력된 3차원 얼굴 영상을 분석하여 3차원 얼굴 영상에서 가장 주된 특징이 되는 코 영역을 추출하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권12호
/
pp.6028-6042
/
2019
Since Sparse Nonnegative Matrix Factorization (SNMF) method can control the sparsity of the decomposed matrix, and then it can be adopted to control the sparsity of facial feature extraction and recognition. In order to improve the accuracy of SNMF method for facial feature recognition, new additive iterative rules based on the improved iterative step sizes are proposed to improve the SNMF method, and then the traditional multiplicative iterative rules of SNMF are transformed to additive iterative rules. Meanwhile, to further increase the sparsity of the basis matrix decomposed by the improved SNMF method, a threshold-sparse constraint is adopted to make the basis matrix to a zero-one matrix, which can further improve the accuracy of facial feature recognition. The improved SNMF method based on the additive iterative rules and threshold-sparse constraint is abbreviated as ASNMF, which is adopted to recognize the ORL and CK+ facial datasets, and achieved recognition rate of 96% and 100%, respectively. Meanwhile, from the results of the contrast experiments, it can be found that the recognition rate achieved by the ASNMF method is obviously higher than the basic NMF, traditional SNMF, convex nonnegative matrix factorization (CNMF) and Deep NMF.
얼굴영상에서 나타나는 정서특징을 분석하기 위하여 본 논문에서는 Active Shape Model (ASM)과 Lucas-Kanade (LK) optical flow 기법을 기반으로 하는 특징검출 및 분석방법을 제안한다. Facial Action Coding System에 근거하여 묘사된 정서적 특징을 고려하여, 특징이 분포하는 영역에 위치한 다수의 landmark로 shape 모델을 구성하고 모델에서 각 Landmark를 중심으로 하는 움직임 벡터 윈도우 내부의 픽셀에 대한 LK 기법을 통해 optical flow 벡터를 추출한다. 추출된 움직임 벡터의 방향성 조합에 근거하여 얼굴정서특징을 shape 모델로 표현할 수 있으며, 베이지안 분류기라는 확률 기반 추론기법을 기반으로 정서적 상태에 대한 추정할 수 있다. 또한, 정서특징분석과정의 연산 효율성과 정확성 향상을 도모하기 위하여 common spatial pattern (CSP) 분석기법을 적용하여 정서상태 별로 상관성이 높은 특징만으로 구성된 최적정서특징을 추출한다.
본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제2권2호
/
pp.120-133
/
2008
This paper presents a novel approach for facial motion tracking and facial expression cloning to create a realistic facial animation of a 3D avatar. The exact head pose estimation and facial expression tracking are critical issues that must be solved when developing vision-based computer animation. In this paper, we deal with these two problems. The proposed approach consists of two phases: dynamic head pose estimation and facial expression cloning. The dynamic head pose estimation can robustly estimate a 3D head pose from input video images. Given an initial reference template of a face image and the corresponding 3D head pose, the full head motion is recovered by projecting a cylindrical head model onto the face image. It is possible to recover the head pose regardless of light variations and self-occlusion by updating the template dynamically. In the phase of synthesizing the facial expression, the variations of the major facial feature points of the face images are tracked by using optical flow and the variations are retargeted to the 3D face model. At the same time, we exploit the RBF (Radial Basis Function) to deform the local area of the face model around the major feature points. Consequently, facial expression synthesis is done by directly tracking the variations of the major feature points and indirectly estimating the variations of the regional feature points. From the experiments, we can prove that the proposed vision-based facial expression cloning method automatically estimates the 3D head pose and produces realistic 3D facial expressions in real time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.