• 제목/요약/키워드: Facial Feature

검색결과 517건 처리시간 0.025초

Feature Extraction Based on GRFs for Facial Expression Recognition

  • Yoon, Myoong-Young
    • 한국산업정보학회논문지
    • /
    • 제7권3호
    • /
    • pp.23-31
    • /
    • 2002
  • 본 논문에서는 화상자료의 특성인 이웃 화소간의 종속성을 표현하는데 적합한 깁스분포를 바탕으로 얼굴 표정을 인식을 위한 특징벡터를 추출하는 새로운 방법을 제안하였다. 추출된 특징벡터는 얼굴 이미지의 크기, 위치, 회전에 대하여 불변한 특성을 갖는다. 얼굴 표정을 인식하기 위한 알고리즘은 특징벡터 추출하는 과정과 패턴을 인식하는 두 과정으로 나뉘어진다. 특징벡터는 얼굴 화상에 대하여 추정된 깁스분포를 바탕으로 수정된 2-D 조건부 모멘트로 구성된다. 얼굴 표정인식 과정에서는 패턴인식에 널리 사용되는 이산형 HMM를 사용한다. 제안된 방법에 대한 성능평가를 위하여 4가지의 얼굴 표정 인식 실험을 Workstation에서 실험한 결과, 제안된 얼굴 표정 인식 방법이 95% 이상의 성능을 보여주었다.

  • PDF

조명 변화에 견고한 얼굴 특징 추출 (Robust Extraction of Facial Features under Illumination Variations)

  • 정성태
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권6호
    • /
    • pp.1-8
    • /
    • 2005
  • 얼굴 분석은 얼굴 인식 머리 움직임과 얼굴 표정을 이용한 인간과 컴퓨터사이의 인터페이스, 모델 기반 코딩, 가상현실 등 많은 응용 분야에서 유용하게 활용된다. 이러한 응용 분야에서는 얼굴의 특징점들을 정확하게 추출해야 한다. 본 논문에서는 눈, 눈썹, 입술의 코너와 같은 얼굴 특징을 자동으로 추출하는 방법을 제안한다. 먼저, 입력 영상으로부터 AdaBoost 기반의 객체 검출 기법을 이용하여 얼굴 영역을 추출한다. 그 다음에는 계곡 에너지. 명도 에너지, 경계선 에너지의 세 가지 특징 에너지를 계산하여 결합한다. 구해진 특징 에너지 영상에 대하여 에너지 값이 큰 수평 방향향의 사각형을 탐색함으로써 특징 영역을 검출한다. 마지막으로 특징 영역의 가장자리 부분에서 코너 검출 알고리즘을 적용함으로써 눈, 눈썹, 입술의 코너를 검출한다. 본 논문에서 제안된 얼굴 특징 추출 방법은 세 가지의 특징 에너지를 결합하여 사용하고 계곡 에너지와 명도 에너지의 계산이 조명 변화에 적응적인 특성을 갖도록 함으로써, 다양한 환경 조건하에서 견고하게 얼굴 특징을 추출할 수 있다.

  • PDF

다중 센서 융합 알고리즘을 이용한 감정인식 및 표현기법 (Emotion Recognition and Expression Method using Bi-Modal Sensor Fusion Algorithm)

  • 주종태;장인훈;양현창;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.754-759
    • /
    • 2007
  • In this paper, we proposed the Bi-Modal Sensor Fusion Algorithm which is the emotional recognition method that be able to classify 4 emotions (Happy, Sad, Angry, Surprise) by using facial image and speech signal together. We extract the feature vectors from speech signal using acoustic feature without language feature and classify emotional pattern using Neural-Network. We also make the feature selection of mouth, eyes and eyebrows from facial image. and extracted feature vectors that apply to Principal Component Analysis(PCA) remakes low dimension feature vector. So we proposed method to fused into result value of emotion recognition by using facial image and speech.

형태분석에 의한 특징 추출과 BP알고리즘을 이용한 정면 얼굴 인식 (Full face recognition using the feature extracted gy shape analyzing and the back-propagation algorithm)

  • 최동선;이주신
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.63-71
    • /
    • 1996
  • This paper proposes a method which analyzes facial shape and extracts positions of eyes regardless of the tilt and the size of input iamge. With the extracted feature parameters of facial element by the method, full human faces are recognized by a neural network which BP algorithm is applied on. Input image is changed into binary codes, and then labelled. Area, circumference, and circular degree of the labelled binary image are obtained by using chain code and defined as feature parameters of face image. We first extract two eyes from the similarity and distance of feature parameter of each facial element, and then input face image is corrected by standardizing on two extracted eyes. After a mask is genrated line historgram is applied to finding the feature points of facial elements. Distances and angles between the feature points are used as parameters to recognize full face. To show the validity learning algorithm. We confirmed that the proposed algorithm shows 100% recognition rate on both learned and non-learned data for 20 persons.

  • PDF

인간-로봇 상호작용을 위한 자세가 변하는 사용자 얼굴검출 및 얼굴요소 위치추정 (Face and Facial Feature Detection under Pose Variation of User Face for Human-Robot Interaction)

  • 박성기;박민용;이태근
    • 제어로봇시스템학회논문지
    • /
    • 제11권1호
    • /
    • pp.50-57
    • /
    • 2005
  • We present a simple and effective method of face and facial feature detection under pose variation of user face in complex background for the human-robot interaction. Our approach is a flexible method that can be performed in both color and gray facial image and is also feasible for detecting facial features in quasi real-time. Based on the characteristics of the intensity of neighborhood area of facial features, new directional template for facial feature is defined. From applying this template to input facial image, novel edge-like blob map (EBM) with multiple intensity strengths is constructed. Regardless of color information of input image, using this map and conditions for facial characteristics, we show that the locations of face and its features - i.e., two eyes and a mouth-can be successfully estimated. Without the information of facial area boundary, final candidate face region is determined by both obtained locations of facial features and weighted correlation values with standard facial templates. Experimental results from many color images and well-known gray level face database images authorize the usefulness of proposed algorithm.

인접 부위의 깊이 차를 이용한 3차원 얼굴 영상의 특징 추출 (Facial Feature Localization from 3D Face Image using Adjacent Depth Differences)

  • 김익동;심재창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.617-624
    • /
    • 2004
  • 본 연구에서는 3차원 얼굴 데이타에서 인접 부위의 깊이 차를 이용하여 얼굴의 주요 특징을 추출해 내는 방법을 제안한다. 인간은 사물의 특정 부분의 깊이 정보를 인식하는데 있어서 인접 부위와의 깊이 정보를 비교하고, 이를 바탕으로 깊이 값에 의한 대조가 두드러진 정도에 따라 상대적으로 깊이가 깊고 얕음을 지각하게 된다. 이런 인식 원리를 얼굴의 특징 추출에 적용하여 간단한 연산 과정을 통해 신뢰성 있고, 빠른 얼굴의 특징 추출이 가능하다. 인접 부위의 깊이 차는 수평방향과 수직방향으로 각각 일정 거리를 둔 지점에서의 두 지점간의 깊이 차로 생성된다. 생성된 수평, 수직 방향으로 인접 깊이 차와 입력된 3차원 얼굴 영상을 분석하여 3차원 얼굴 영상에서 가장 주된 특징이 되는 코 영역을 추출하였다.

Facial Feature Recognition based on ASNMF Method

  • Zhou, Jing;Wang, Tianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.6028-6042
    • /
    • 2019
  • Since Sparse Nonnegative Matrix Factorization (SNMF) method can control the sparsity of the decomposed matrix, and then it can be adopted to control the sparsity of facial feature extraction and recognition. In order to improve the accuracy of SNMF method for facial feature recognition, new additive iterative rules based on the improved iterative step sizes are proposed to improve the SNMF method, and then the traditional multiplicative iterative rules of SNMF are transformed to additive iterative rules. Meanwhile, to further increase the sparsity of the basis matrix decomposed by the improved SNMF method, a threshold-sparse constraint is adopted to make the basis matrix to a zero-one matrix, which can further improve the accuracy of facial feature recognition. The improved SNMF method based on the additive iterative rules and threshold-sparse constraint is abbreviated as ASNMF, which is adopted to recognize the ORL and CK+ facial datasets, and achieved recognition rate of 96% and 100%, respectively. Meanwhile, from the results of the contrast experiments, it can be found that the recognition rate achieved by the ASNMF method is obviously higher than the basic NMF, traditional SNMF, convex nonnegative matrix factorization (CNMF) and Deep NMF.

ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법 (Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow)

  • 고광은;박승민;박준형;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.512-517
    • /
    • 2011
  • 얼굴영상에서 나타나는 정서특징을 분석하기 위하여 본 논문에서는 Active Shape Model (ASM)과 Lucas-Kanade (LK) optical flow 기법을 기반으로 하는 특징검출 및 분석방법을 제안한다. Facial Action Coding System에 근거하여 묘사된 정서적 특징을 고려하여, 특징이 분포하는 영역에 위치한 다수의 landmark로 shape 모델을 구성하고 모델에서 각 Landmark를 중심으로 하는 움직임 벡터 윈도우 내부의 픽셀에 대한 LK 기법을 통해 optical flow 벡터를 추출한다. 추출된 움직임 벡터의 방향성 조합에 근거하여 얼굴정서특징을 shape 모델로 표현할 수 있으며, 베이지안 분류기라는 확률 기반 추론기법을 기반으로 정서적 상태에 대한 추정할 수 있다. 또한, 정서특징분석과정의 연산 효율성과 정확성 향상을 도모하기 위하여 common spatial pattern (CSP) 분석기법을 적용하여 정서상태 별로 상관성이 높은 특징만으로 구성된 최적정서특징을 추출한다.

SIFT 기술자를 이용한 얼굴 표정인식 (Facial Expression Recognition Using SIFT Descriptor)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권2호
    • /
    • pp.89-94
    • /
    • 2016
  • 본 논문에서는 SIFT 기술자를 이용한 얼굴 특징과 SVM 분류기로 표정인식을 수행하는 방법에 대하여 제안한다. 기존 SIFT 기술자는 물체 인식 분야에 있어 키포인트 검출 후, 검출된 키포인트에 대한 특징 기술자로써 주로 사용되나, 본 논문에서는 SIFT 기술자를 얼굴 표정인식의 특징벡터로써 적용하였다. 표정인식을 위한 특징은 키포인트 검출 과정 없이 얼굴영상을 서브 블록 영상으로 나누고 각 서브 블록 영상에 SIFT 기술자를 적용하여 계산되며, 표정분류는 SVM 알고리즘으로 수행된다. 성능평가는 기존의 LBP 및 LDP와 같은 이진패턴 특징기반의 표정인식 방법과 비교 수행되었으며, 실험에는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 사용하였다. 실험결과, SIFT 기술자를 이용한 제안방법은 기존방법보다 CK 데이터베이스에서 6.06%의 향상된 인식결과를 보였으며, JAFFE 데이터베이스에서는 3.87%의 성능향상을 보였다.

A Vision-based Approach for Facial Expression Cloning by Facial Motion Tracking

  • Chun, Jun-Chul;Kwon, Oryun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제2권2호
    • /
    • pp.120-133
    • /
    • 2008
  • This paper presents a novel approach for facial motion tracking and facial expression cloning to create a realistic facial animation of a 3D avatar. The exact head pose estimation and facial expression tracking are critical issues that must be solved when developing vision-based computer animation. In this paper, we deal with these two problems. The proposed approach consists of two phases: dynamic head pose estimation and facial expression cloning. The dynamic head pose estimation can robustly estimate a 3D head pose from input video images. Given an initial reference template of a face image and the corresponding 3D head pose, the full head motion is recovered by projecting a cylindrical head model onto the face image. It is possible to recover the head pose regardless of light variations and self-occlusion by updating the template dynamically. In the phase of synthesizing the facial expression, the variations of the major facial feature points of the face images are tracked by using optical flow and the variations are retargeted to the 3D face model. At the same time, we exploit the RBF (Radial Basis Function) to deform the local area of the face model around the major feature points. Consequently, facial expression synthesis is done by directly tracking the variations of the major feature points and indirectly estimating the variations of the regional feature points. From the experiments, we can prove that the proposed vision-based facial expression cloning method automatically estimates the 3D head pose and produces realistic 3D facial expressions in real time.