• Title/Summary/Keyword: Facial Color Model

Search Result 70, Processing Time 0.025 seconds

Facial Color Control based on Emotion-Color Theory (정서-색채 이론에 기반한 게임 캐릭터의 동적 얼굴 색 제어)

  • Park, Kyu-Ho;Kim, Tae-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.8
    • /
    • pp.1128-1141
    • /
    • 2009
  • Graphical expressions are continuously improving, spurred by the astonishing growth of the game technology industry. Despite such improvements, users are still demanding a more natural gaming environment and true reflections of human emotions. In real life, people can read a person's moods from facial color and expression. Hence, interactive facial colors in game characters provide a deeper level of reality. In this paper we propose a facial color adaptive technique, which is a combination of an emotional model based on human emotion theory, emotional expression pattern using colors of animation contents, and emotional reaction speed function based on human personality theory, as opposed to past methods that expressed emotion through blood flow, pulse, or skin temperature. Experiments show this of expression of the Facial Color Model based on facial color adoptive technique and expression of the animation contents is effective in conveying character emotions. Moreover, the proposed Facial Color Adaptive Technique can be applied not only to 2D games, but to 3D games as well.

  • PDF

Detection of Facial Region and features from Color Images based on Skin Color and Deformable Model (스킨 컬러와 변형 모델에 기반한 컬러영상으로부터의 얼굴 및 얼굴 특성영역 추출)

  • 민경필;전준철;박구락
    • Journal of Internet Computing and Services
    • /
    • v.3 no.6
    • /
    • pp.13-24
    • /
    • 2002
  • This paper presents an automatic approach to detect face and facial feature from face images based on the color information and deformable model. Skin color information has been widely used for face and facial feature diction since it is effective for object recognition and has less computational burden, In this paper, we propose how to compensates varying light condition and utilize the transformed YCbCr color model to detect candidates region of face and facial feature from color images, Moreover, the detected face facial feature areas are subsequently assigned to a initial condition of active contour model to extract optimal boundaries of face and facial feature by resolving initial boundary problem when the active contour is used, The experimental results show the efficiency of the proposed method, The face and facial feature information will be used for face recognition and facial feature descriptor.

  • PDF

Extraction of Facial Region Using Fuzzy Color Filter (퍼지 색상 필터를 이용한 얼굴 영역 추출)

  • Kim, M.H.;Park, J.B.;Jung, K.H.;Joo, Y.H.;Lee, J.;Cho, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.147-149
    • /
    • 2004
  • There are no authentic solutions in a face region extraction problem though it is an important part of pattern recognition and has diverse application fields. It is not easy to develop the facial region extraction algorithm because the facial image is very sensitive according to age, sex, and illumination. In this paper, to solve these difficulties, a fuzzy color filer based on the facial region extraction algorithm is proposed. The fuzzy color filter makes the robust facial region extraction enable by modeling the skin color. Especially, it is robust in facial region extraction with various illuminations. In addition, to identify the fuzzy color filter, a linear matrix inequality(LMI) optimization method is used. Finally, the simulation result is given to confirm the superiority of the proposed algorithm.

  • PDF

A Realtime Expression Control for Realistic 3D Facial Animation (현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어)

  • Kim Jung-Gi;Min Kyong-Pil;Chun Jun-Chul;Choi Yong-Gil
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2006
  • This work presents o novel method which extract facial region und features from motion picture automatically and controls the 3D facial expression in real time. To txtract facial region and facial feature points from each color frame of motion pictures a new nonparametric skin color model is proposed rather than using parametric skin color model. Conventionally used parametric skin color models, which presents facial distribution as gaussian-type, have lack of robustness for varying lighting conditions. Thus it needs additional work to extract exact facial region from face images. To resolve the limitation of current skin color model, we exploit the Hue-Tint chrominance components and represent the skin chrominance distribution as a linear function, which can reduce error for detecting facial region. Moreover, the minimal facial feature positions detected by the proposed skin model are adjusted by using edge information of the detected facial region along with the proportions of the face. To produce the realistic facial expression, we adopt Water's linear muscle model and apply the extended version of Water's muscles to variation of the facial features of the 3D face. The experiments show that the proposed approach efficiently detects facial feature points and naturally controls the facial expression of the 3D face model.

  • PDF

The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors (Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식)

  • Choi Gwang-Mi;Kim Hyeong-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1513-1517
    • /
    • 2005
  • In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.

Facial Features and Motion Recovery using multi-modal information and Paraperspective Camera Model (다양한 형식의 얼굴정보와 준원근 카메라 모델해석을 이용한 얼굴 특징점 및 움직임 복원)

  • Kim, Sang-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.563-570
    • /
    • 2002
  • Robust extraction of 3D facial features and global motion information from 2D image sequence for the MPEG-4 SNHC face model encoding is described. The facial regions are detected from image sequence using multi-modal fusion technique that combines range, color and motion information. 23 facial features among the MPEG-4 FDP (Face Definition Parameters) are extracted automatically inside the facial region using color transform (GSCD, BWCD) and morphological processing. The extracted facial features are used to recover the 3D shape and global motion of the object using paraperspective camera model and SVD (Singular Value Decomposition) factorization method. A 3D synthetic object is designed and tested to show the performance of proposed algorithm. The recovered 3D motion information is transformed into global motion parameters of FAP (Face Animation Parameters) of the MPEG-4 to synchronize a generic face model with a real face.

Spectrum-Based Color Reproduction Algorithm for Makeup Simulation of 3D Facial Avatar

  • Jang, In-Su;Kim, Jae Woo;You, Ju-Yeon;Kim, Jin Seo
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.969-979
    • /
    • 2013
  • Various simulation applications for hair, clothing, and makeup of a 3D avatar can provide more useful information to users before they select a hairstyle, clothes, or cosmetics. To enhance their reality, the shapes, textures, and colors of the avatars should be similar to those found in the real world. For a more realistic 3D avatar color reproduction, this paper proposes a spectrum-based color reproduction algorithm and color management process with respect to the implementation of the algorithm. First, a makeup color reproduction model is estimated by analyzing the measured spectral reflectance of the skin samples before and after applying the makeup. To implement the model for a makeup simulation system, the color management process controls all color information of the 3D facial avatar during the 3D scanning, modeling, and rendering stages. During 3D scanning with a multi-camera system, spectrum-based camera calibration and characterization are performed to estimate the spectrum data. During the virtual makeup process, the spectrum data of the 3D facial avatar is modified based on the makeup color reproduction model. Finally, during 3D rendering, the estimated spectrum is converted into RGB data through gamut mapping and display characterization.

The Extraction of Face Regions based on Optimal Facial Color and Motion Information in Image Sequences (동영상에서 최적의 얼굴색 정보와 움직임 정보에 기반한 얼굴 영역 추출)

  • Park, Hyung-Chul;Jun, Byung-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • The extraction of face regions is required for Head Gesture Interface which is a natural user interface. Recently, many researchers are interested in using color information to detect face regions in image sequences. Two most widely used color models, HSI color model and YIQ color model, were selected for this study. Actually H-component of HSI and I-component of YIQ are used in this research. Given the difference in the color component, this study was aimed to compare the performance of face region detection between the two models. First, we search the optimum range of facial color for each color component, examining the detection accuracy of facial color regions for variant threshold range about facial color. And then, we compare the accuracy of the face box for both color models by using optimal facial color and motion information. As a result, a range of $0^{\circ}{\sim}14^{\circ}$ in the H-component and a range of $-22^{\circ}{\sim}-2^{\circ}$ in the I-component appeared to be the most optimum range for extracting face regions. When the optimal facial color range is used, I-component is better than H-component by about 10% in accuracy to extract face regions. While optimal facial color and motion information are both used, I-component is also better by about 3% in accuracy to extract face regions.

  • PDF

Automatic Generation of the Personal 3D Face Model (3차원 개인 얼굴 모델 자동 생성)

  • Ham, Sang-Jin;Kim, Hyoung-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.104-114
    • /
    • 1999
  • This paper proposes an efficient method for the automatic generation of personalized 3D face model from color image sequence. To detect a robust facial region in a complex background, moving color detection technique based on he facial color distribution has been suggested. Color distribution and edge position information in the detected face region are used to extract the exact 31 facial feature points of the facial description parameter(FDP) proposed by MPEG-4 SNHC(Synthetic-Natural Hybrid Coding) adhoc group. Extracted feature points are then applied to the corresponding vertex points of the 3D generic face model composed of 1038 triangular mesh points. The personalized 3D face model can be generated automatically in less then 2 seconds on Pentium PC.

  • PDF

Synthesis of Realistic Facial Expression using a Nonlinear Model for Skin Color Change (비선형 피부색 변화 모델을 이용한 실감적인 표정 합성)

  • Lee Jeong-Ho;Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.67-75
    • /
    • 2006
  • Facial expressions exhibit not only facial feature motions, but also subtle changes in illumination and appearance. Since it is difficult to generate realistic facial expressions by using only geometric deformations, detailed features such as textures should also be deformed to achieve more realistic expression. The existing methods such as the expression ratio image have drawbacks, in that detailed changes of complexion by lighting can not be generated properly. In this paper, we propose a nonlinear model for skin color change and a model-based synthesis method for facial expression that can apply realistic expression details under different lighting conditions. The proposed method is composed of the following three steps; automatic extraction of facial features using active appearance model and geometric deformation of expression using warping, generation of facial expression using a model for nonlinear skin color change, and synthesis of original face with generated expression using a blending ratio that is computed by the Euclidean distance transform. Experimental results show that the proposed method generate realistic facial expressions under various lighting conditions.