• Title/Summary/Keyword: Fabrication process

Search Result 4,352, Processing Time 0.031 seconds

Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

  • Park, Seung-Hyun;Shin, Jung-Ah;Park, Hyun-Hee;Yi, Gwang-Yong;Chung, Kwang-Jae;Park, Hae-Dong;Kim, Kab-Bae;Lee, In-Seop
    • Safety and Health at Work
    • /
    • v.2 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Objectives: The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods: A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results: A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion: Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs.

Study on Improvement of Signal to Noise Ratio for HgI2 Radiation Conversion Sensor Using Blocking Layer (Blocking layer 적용을 통한 HgI2 방사선 변환센서의 신호대 잡음비 향상에 관한 연구)

  • Park, Ji-Koon;Yoon, In-Chan;Choi, Su-Rim;Yoon, Ju-Sun;Lee, Young-Kyu;Kang, Sang-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.2
    • /
    • pp.97-101
    • /
    • 2011
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using double layer technique tio decrease dark current. High efficiency material in substitution for a-Se have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using Hetero junction already used as solar cell, semiconductor. Particle-In-Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in PIB method. To make up for the weak points, double layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity is measured to evaluate double layer radiation sensor material.

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

Design and fabrication of the MMIC frequency doubler for 29 GHz local oscillator application (29GHz 국부 발진 신호용 MMIC 주파수 체배기의 설계 및 제작)

  • Kim, Jin-Sung;Lee, Seong-Dae;Lee, Bok-Hyoung;Kim, Sung-Chan;Sul, Woo-Suk;Lim, Byeong-Ok;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.11
    • /
    • pp.63-70
    • /
    • 2001
  • We demonstrate the MMIC (monolithic microwave integrated circuit) frequency doublers generating stable and low-cost 29 GHz local oscillator signals from 14.5 GHz input signals. These devices were designed and fabricated by using the M MIC integration process of $0.1\;{\mu}m$ gate-length PHEMTs (pseudomorphic high electron mobility transistors) and passive components. The measurements showed S11 or -9.2 dB at 145 GHz, S22 of -18.6 dG at 29 GHz and a minimum conversion loss of 18.2 dB at 14.5 GHz with an input power or 6 dBm. Fundamental signal of 14.5 GHz were suppressed below 15.2 dBe compared to the second harmonic signal at the output port, and the isolation characteristics of fundamental signal between the input and the output port were maintained above :i0 dB in the frequency range 10.5 GHz to 18.5 GHz. The chip size of the fabricated MMIC frequency doubler is $1.5{\times}2.2\;mm^2$.

  • PDF

A 3.2Gb/s Clock and Data Recovery Circuit without Reference Clock for Serial Data Communication (시리얼 데이터 통신을 위한 기준 클록이 없는 3.2Gb/s 클록 데이터 복원회로)

  • Kim, Kang-Jik;Jung, Ki-Sang;Cho, Seong-Ik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.2
    • /
    • pp.72-77
    • /
    • 2009
  • In this paper, a 3.2Gb/s clock and data recovery (CDR) circuit for a high-speed serial data communication without the reference clock is described This CDR circuit consists of 5 parts as Phase and frequency detector(PD and FD), multi-phase Voltage Controlled-Oscillator(VCO), Charge-pumps (CP) and external Loop-Filter(KF). It is adapted the PD and FD, which incorporates a half-rate bang-bang type oversampling PD and a half-rate FD that can improve pull-in range. The VCO consists of four fully differential delay cells with rail-to-rail current bias scheme that can increase the tuning range and tuning linearity. Each delay cell has output buffers as a full-swing generator and a duty-cycle mismatch compensation. This materialized CDR can achieve wide pull-in range without an extra reference clock and it can be also reduced chip area and power consumption effectively because there is no additional Phase Locked- Loop(PLL) for generating reference clock. The CDR circuit was designed for fabrication using 0.18um 1P6M CMOS process and total chip area excepted LF is $1{\times}1mm^2$. The pk-pk jitter of recovered clock is 26ps at 3.2Gb/s input data rate and total power consumes 63mW from 1.8V supply voltage according to simulation results. According to test result, the pk-pk jitter of recovered clock is 55ps at the same input data-rate and the reliable range of input data-rate is about from 2.4Gb/s to 3.4Gb/s.

A Study on the Ultra Small Size 25 Watt High Power Amplifier for Satellite Mobile Communications System at L-Band (L-band 위성통신 시스템을 위한 극소형 25 Watt 고출력증폭기에 관한 연구)

  • Jeon, Joong-Sung;Ye, Byeong-Duck;Kim, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.22-27
    • /
    • 2002
  • The 25 Watt hybrid MIC SSPA has been developed in the frequency rang from 1.6265 GHz to 1.6465 GHz for uplink of INMARST's earth station. To simplify the fabrication process, the whole system is designed of two parts composed of a friving amplifier and a power amplifier. The Motorolas MRF-6401 is used for driving part, the Motorolas MRF-16006 and MRF-16030 is used the power amplifier. We reduced weight and volume of high power amplifier through arranging the bias circuits in the same housing. The realized SSPA has more than 30 dB for gain within 20 MHz bandwidth, and the voltage standing wave ratios(VSWR) of input and output port are less than 1.7, respectively. The output power of 44 dBm is achieved at the 1 dB gain compression point of 106365 GHz These results reveal a high power amplifier of 25 Watt which is the design target. The Proposed SSPA manufacture techniques in this paper can be applied to the implementation of high power amplifiers for some radars and SCPC.

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy (화학적 침출법을 통한 표면 다공성 Al-Cu-Si 공정 합금 제조)

  • Lee, Joonhak;Kim, Jungtae;Im, Soohyun;Park, Hyejin;Shin, Hojung;Park, Kyuhyun;Qian, M.;Kim, Kibeum
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.

Fabrication and characterization of 3-D porous scaffold by polycaprolactone (폴리카프로락톤을 이용한 3차원 다공성 지지체 제조 및 특성 분석)

  • Kim, Jin-Tae;Bang, Jung Wan;Hyun, Chang-Yong;Choi, Hyo Jeong;Kim, Tae-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • This study was a preparatory experiment aimed the development of membrane scaffolds for tissue engineering. A PCL composite solution contained sodium chloride(NaCl). PCL porous membrane scaffolds were formed on a glass casting plate using a film applicator and immersed in distilled water to remove the NaCl reaching after drying. NaCl was used as a pore former for a 3 dimensional pore net-work. The dry condition parameters were $4^{\circ}C$, room temperature (RT) and $40^{\circ}C$ for each different temperatures in the drying experiment. SEM revealed the morphology of the pores in the membrane after drying and evaluated the in vitro cytotoxicity for basic bio-compatibility. The macro and micro pores existed together in the scaffold and showed a 3-dimensional pore net-working morphology at RT. The in vitro cytotoxicity test result was "grade 2" in accordance with the criterion for cytotoxicity by ISO 10993-5. The dry condition affected the formation of a 3 dimensional pore network and micro and macro pores. Therefore, these results are expected provide the basic process for the development of porous membrane scaffolds to control degradation and allow drug delivery.

Radiation detector material development with multi-layer by hetero-junction for the reduction of leakage current (헤테르접합을 이용한 누설전류 저감을 위한 다층구조의 방사선 검출 물질 개발)

  • Oh, Kyung-Min;Yoon, Min-Seok;Kim, Min-Woo;Cho, Sung-Ho;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.11-15
    • /
    • 2009
  • In this study, the basic research verifying possibility of applications as radiology image sensor in Digital Radiography was performed, the radiology image sensor was fabricated using a multi-layer technique to decrease dark current. High efficiency materials in substitution for Amorphous Selenium(a-Se) have been studied as a direct method of imaging detector in Digital Radiography to decrease dark current by using PN junction or Hetero junction already used as solar cell, semiconductor. Particle-In -Binder method is used to fabricate radiology image sensor because it has a lot of advantages such as fabrication convenient, high yield, suitability for large area sensor. But high leakage current is one of main problem in Particle-In -Binder method. To make up for the weak points, multi-layer technique is used, and it is considered that high efficient digital radiation sensor can be fabricated with easy and convenient process. In this study, electrical properties such as leakage current, sensitivity, signal linearity is measured to evaluate multi-layer radiation sensor material.

  • PDF