Browse > Article
http://dx.doi.org/10.3740/MRSK.2013.23.4.227

Selective Chemical Dealloying for Fabrication of Surface Porous Al88Cu6Si6 Eutectic Alloy  

Lee, Joonhak (Department of Advanced Materials Engineering, Sejong University)
Kim, Jungtae (Department of Advanced Materials Engineering, Sejong University)
Im, Soohyun (Department of Advanced Materials Engineering, Sejong University)
Park, Hyejin (Department of Advanced Materials Engineering, Sejong University)
Shin, Hojung (Department of Advanced Materials Engineering, Sejong University)
Park, Kyuhyun (Department of Advanced Materials Engineering, Sejong University)
Qian, M. (School of Mining and Mechanical Engineering, The University of Queensland)
Kim, Kibeum (Department of Advanced Materials Engineering, Sejong University)
Publication Information
Korean Journal of Materials Research / v.23, no.4, 2013 , pp. 227-232 More about this Journal
Abstract
Al-based alloys have recently attracted considerable interest as structural materials and light weight materials due to their excellent physical and mechanical properties. For the investigation of the potential of Al-based alloys, a surface porous $Al_{88}Cu_6Si_6$ eutectic alloy has been fabricated through a chemical leaching process. The formation and microstructure of the surface porous $Al_{88}Cu_6Si_6$ eutectic alloy have been investigated using X-ray diffraction and scanning electron microscopy. The $Al_{88}Cu_6Si_6$ eutectic alloy is composed of an ${\alpha}$-Al dendrite phase and a single eutectic phase of $Al_2Cu$ and ${\alpha}$-Al. We intended to remove only the ${\alpha}$-Al phase and then the $Al_2Cu$ phase would form a porous structure on the surface with open pores. Both acidic and alkaline aqueous chemical solutions were used with various concentrations to modify the influence on the microstructure and the overall chemical reaction was carried out for 24 hr. A homogeneous open porous structure on the surface was revealed via selective chemical leaching with a $H_2SO_4$ solution. Only the ${\alpha}$-Al phase was successfully leached while the morphology of the $Al_2Cu$ phase was maintained. The pore size was in a range of $1{\sim}5{\mu}m$ and the dealloying depth was nearly $3{\mu}m$. However, under an alkaline NaOH, aqueous solution, an inhomogeneous porous structure on the surface was formed with a 5 wt% NaOH solution and the morphology of the $Al_2Cu$ phase was not preserved. In addition, the sample that was leached by using a 7 wt% NaOH solution crumbled. Al extracted from the Al2Cu phase as ${\alpha}$-Al phase was dealloyed, and increasing concentration of NaOH strongly influenced the morphology of the $Al_2Cu$ phase and sample statement.
Keywords
Aluminum eutectic alloy; chemical leaching; porous;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. B. Sun, M. L. Sui, Y. M. Wang, G. He, J. Eckert and E. Ma, Acta Mater., 54, 1349 (2006).   DOI   ScienceOn
2 J. M. Park, T. E. Kim, S. W. Sohn, D. H. Kim, K. B. Kim, W. T. Kim and J. Eckert, Appl. Phys. Lett., 93, 031913 (2008).   DOI   ScienceOn
3 J. H. Han, G. A. Song, E. M. Park, S. H. Lee, J. Y. Park, Y. Seo, N. S. Lee, W. H. Lee, and K. B. Kim, Met. Mater. Int. 17(6), 873 (2011).   DOI   ScienceOn
4 Erlebacher, J. Aziz, M.J. Karma, A. Dimitrov, N. Sieradzki, K. Nature, 450, 140 (2002).
5 Erlebaacher, J. J. Electrochm. Soc. C614, 151 (2004).
6 Raney, M. U. S. Patent No. 1563587 (1925).
7 Smith, A. J.; Trimm, D. L. Annu. Rev. Mater. Res. 127, 35 (2005).
8 W. J. Sim, Ilchai Na, M. H. Song, H. B. Chung, J. H. Kim, T. H. Kim, K. P. Park, Trans. Of the Korean Hydrogen and New Energy Society, 20, 1 (2009).
9 Y. I. Seo, Y. J. Jeon, Y. J. Lee, D. G. Kim, K. H. Lee, Y. D. Kim, Kor. J. Mater. Res., 20, 2 (2010).
10 J. E. Hatch "Aluminum; properties and physical metallurgy", American Society for Metals, USA (1984).
11 G. He, J. Eckert, W. Loser and L. Schultz, Nat. Mater., 2, 33 (2003).   DOI   ScienceOn