• Title/Summary/Keyword: Fabricated design area

Search Result 320, Processing Time 0.027 seconds

Analysis of axial compression performance of BFRRAC-filled square steel tubular column

  • Xianggang Zhang;Jixiang Niu;Wenlong Shen;Dapeng Deng;Yajun Huang
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.457-471
    • /
    • 2023
  • To make up for the performance weaknesses of recycled aggregate concrete (RAC), expand the application range of RAC, and alleviate the environmental problems caused by excessive exploitation of natural coarse aggregates (NCA), this study proposes a basalt fiber-reinforced recycled aggregate concrete (BFRRAC)-filled square steel tubular columns that combines two modification methods of steel tube and fiber, which may greatly enhance the mechanical properties of RAC. The axial compression performance for BFRRAC-filled square steel tubular columns was reported during this study. Seven specimens with different replacement ratios of recycled coarse aggregate (RCA), length-diameter ratios, along with basalt fiber (BF) contents were designed as well as fabricated for performing axial compression test. For each specimen, the whole failure process as well as mode of specimen were discovered, subsequently the load-axial displacement curve has obtained, after which the mechanical properties was explained. A finite element analysis model for specimens under axial compression was then established. Subsequently, based on this model, the factors affecting axial compression performance for BFRRAC-filled square steel tubes were extended and analyzed, after which the corresponding design suggestion was proposed. The results show that in the columns with length-diameter ratios of 5 and 8, bulging failure was presented, and the RAC was severely crushed at the bulging area of the specimen. The replacement ratio of RCA as well as BF content little affected specimen's peak load (less than 5%). As the content of BF enhanced from 0 kg/m3 to 4 kg/m3, the dissipation factor and ductility coefficients increased by 10.2% and 5.6%, respectively, with a wide range.

Investigation on the Effective Moment of Inertia of Reinforced Concrete Flexural Members Under Service Load (사용하중 상태에서 철근콘크리트 휨부재의 유효 단면2차모멘트에 대한 고찰)

  • Lee, Seung-Bea;Park, Mi-Young;Jang, Su-Youn;Kim, Kang-Su;Kim, Sang-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.393-404
    • /
    • 2008
  • The approaches in many design codes for the estimation of the deflection of flexural reinforced concrete (RC) members utilize the concept of the effective moment of inertia which considers the reduction of flexural rigidity of RC beams after cracking. However, the effective moment of inertia in design codes are primarily based on the ratio of maximum moment and cracking moment of beam subjected to loading without proper consideration on many other possible influencing factors such as span length, member end condition, sectional size, loading geometry, materials, sectional properties, amount of cracks and its distribution, and etc. In this study, therefore, an experimental investigation was conducted to provide fundamental test data on the effective moment of inertia of RC beams for the evaluation of flexural deflection, and to develop a modified method on the estimation of the effective moment of inertia based on test results. 14 specimens were fabricated with the primary test parameters of concrete strength, cover thickness, reinforcement ratio, and bar diameters, and the effective moments of inertia obtained from the test results were compared with those by design codes, existing equations, and the modified equation proposed in this study. The proposed method considered the effect of the length of cracking region, reinforcement ratio, and the effective concrete area per bar on the effective moment of inertia, which estimated the effective moment of inertia more close to the test results compared to other approaches.

A Design of the New Three-Line Balun (새로운 3-라인 발룬 설계)

  • 이병화;박동석;박상수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.750-755
    • /
    • 2003
  • This paper proposes a new three-line balun. The equivalent circuit of the proposed three-line balun is presented, and impedance matrix[Z]of the equivalent circuit is derived from the relationship between the current and voltage at each port. The design equation for a given set of balun impedance at input and output ports is presented using[S]parameters, which is transferred fom impedance matrix,[Z]. To demonstrate the feasibility and validity of design equation, multi-layer ceramic(MLC) chip balun operated in the 2.4 GHz ISM band frequency is designed and fabricated by the use of the low temperature co-fired ceramic(LTCC) technology. By employing both the proposed new three-line balun equivalent circuit and multi-layer configuration provided by LTCC technology, the 2012 size MLC balun is realized. Measured results of the multi-layer LTCC three-line balun match well with the full-wave electromagnetic simulation results, and measured in band-phase and amplitude balances over a wide bandwidth are excellent. This proposed balun is very easily applicable to multi-layer structure using LTCC as shown in the paper, and also can be realized with microstrip lines on PCB. This distinctive performance is very favorable for wireless communication systems such as wireless LAN(Local Area Network) and Bluetooth applications.

The Second Animal Tests of Artificial Heart Valves (인공심장판막의 개발과 동물실험 -인공심장판막의 2차 동물실험-)

  • 김형묵
    • Journal of Chest Surgery
    • /
    • v.23 no.4
    • /
    • pp.617-621
    • /
    • 1990
  • A heart supplies blood of about 15, 000 liters to each human organ in a day. A normal function of heart valves is necessary to accomplish these enormous work of heart. The disease of heart valve develops to a narrowness of a closure, resulting in an abnormal circulation of blood. In an attempt to eliminate the affliction of heart valves, the operative method to replace with artificial heart valves has developed and saved numerous patients over past 30 years. This replacement operation has been performed since early 1960`s in Korea, but all the artificial heart valves used are imported from abroad with very high costs until recent years. New artificial heart valves have been developed in Korea Advanced Institute of Science and Technology since early 1980`s. The first developed valve was designed with a free-floating pyrolytic carbon disk that is suspended in a titanium cage. The design of the valve was tested in vitro, and in animals in 1987. The results from this study was that the eccentrically placed struts creates a major and minor orifice when the disc opens and stagnation of flow in the area of the minor orifice has led to valve thrombosis. In this work, the design of the valve was changed from a single - leaflet valve to double - leaflet one in order to resolve the problems observed in the first - year tests. Morphological and hemodynamic studies were made for the newly designed valves through the in vitro and in vivo tests. The design and partial materials of the artificial heart valve was improved comparing with first - year`s model. The disc in the valve was modified from single - leaflet to bi - leaflet, and the material of the cage was changed from titanium metal to silicon - alloyed pyrolytic carbon. A test was made for the valve in order to examine its mechanical performance and stability. Morphological and hemodynamic studies were made for the valve that had been implanted in tricuspid position of mongrel dogs. All the test animals were observed just before the deaths. A new artificial heart valve was designed and fabricated in order to resolve the problems observed in the old model. The new valve was verified to have good stability and high resistance to wear through the performance tests. The hemodynamic properties of the valve after implantation were also estimated to be good in animal tests. Therefore, the results suggest that the newly designed valve in this work has a good quality in view of the biocompatibility. However, valve thrombosis on valve leaflets and annulus were found. This morphological findings were in accordance with results of surface polishing status studies, indicating that a technique of fine polishing of the surface is necessary to develop a valve with higher quality and performance.

  • PDF

The Development of Height Adjustable Steel Manhole cover (높이조절이 가능한 강재 맨홀뚜껑의 개발)

  • Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.581-586
    • /
    • 2018
  • Cast iron manhole lids cause environmental pollution during the manufacturing process, and the work environment is very poor. In addition, if the height of the manhole cover does not match the height of the road surface, it causes considerable inconvenience and safety problems. This study proposes a height - adjustable steel manhole cover that can replace cast iron manhole covers and easily match the road surface with the upper surface of the manhole cover. Structural analysis was performed to grasp the design variable of the structure of the manhole cover, satisfying the required quality performance. To fabricate a manhole cover that satisfies the required load capacity, the optimal design for the U-shaped reinforcement structure was made. The cylindrical shape of the height adjustment part and the low frame were formed by bending the steel sheet into a circular shape and then welding. Reinforcing bars were also made by bending a steel plate. The height adjustment groove was machined by a CNC milling machine. Four prototypes were fabricated and a load bearing test was carried out, and new manhole cover was made reflecting results of the test. In the load bearing test, there was no breakage of the welded part, and deformation occurred mainly at the contact area between the groove and gusset plate. Deformation of 1 to 2.7mm occurred due to a load of 450kN. On the other hand, after removing the load, there was almost no residual deformation, and the load bearing evaluation was judged to be satisfactory because the manhole cover could be disassembled and reassembled.

FRACTURE STRENGTH BETWEEN DIFFERENT CONNECTOR DESIGNS OF ZIRCONIA CORE FOR POSTERIOR FIXED PARTIAL DENTURES MANUFACTURED WITH CAD/CAM SYSTEM (CAD/CAM을 이용한 구치부 전부도재 고정성 국소의치 지르코니아 코어의 연결부 설계에 따른 파절강도)

  • Seo Jun-Yong;Park In-Nim;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Statements of problem: Zirconia core is used for posterior fixed partial dentures because it's good mechanical properties. Stress is concentrated on connectors in fixed partial dentures, so the proper design of connector areas is needed for adequate mechanical long-term properties of any prosthesis. The area of connector is critical, but tooth size and surrounding soft tissue limit the connector design. Purpose: The purpose of this study is to compare fracture strengths between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system and determining the optimal connector design satisfying strength and hygiene. Material and method: The following four groups of 40 posterior fixed partial denture specimens(each group 10) were fabricated as followed; group 1 vertical height of connector is 3mm (control group, all groups have the same condition); group 2, lingual vertical 1mm reinforcement on connector; group 3, lingual vertical 2mm reinforcing on connector and group 4, lingual vertical 3mm reinforcing on connector. Specimens were subjected to compressive loading on the central fossa of pontic by instron. SEM was used to identify the initial crack and characterize the fracture mode. Results: The results were as follows: 1. The mean fracture load of the non-lingual reinforcing group was 1212N and the lingual vertical 1mm reinforcing group was 1510N, the lingual vertical 2mm reinforcing group was 1882N, the lingual vertical 3mm reinforcing group was 1980N. 2. The reinforcing groups were statistically significant compared to non-reinforcing groups(P<0.001). 3. There were 2, 3mm reinforcing groups that were statistically significant compared to 1mm reinforcing groups(P<0.001), and the 3mm reinforcing group was not statistically significant compared to 2mm reinforcing groups(P>0.05) 4. Fractures were initiated in gingival embrasures of connectors and processed to the loading site. Conclusion: In this study, lingual reinforcement of connector for improved strength of zirconia based fixed partial denture is nessasary. And long-term study for clinical application is required

Low Power ADC Design for Mixed Signal Convolutional Neural Network Accelerator (혼성신호 컨볼루션 뉴럴 네트워크 가속기를 위한 저전력 ADC설계)

  • Lee, Jung Yeon;Asghar, Malik Summair;Arslan, Saad;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1627-1634
    • /
    • 2021
  • This paper introduces a low-power compact ADC circuit for analog Convolutional filter for low-power neural network accelerator SOC. While convolutional neural network accelerators can speed up the learning and inference process, they have drawback of consuming excessive power and occupying large chip area due to large number of multiply-and-accumulate operators when implemented in complex digital circuits. To overcome these drawbacks, we implemented an analog convolutional filter that consists of an analog multiply-and-accumulate arithmetic circuit along with an ADC. This paper is focused on the design optimization of a low-power 8bit SAR ADC for the analog convolutional filter accelerator We demonstrate how to minimize the capacitor-array DAC, an important component of SAR ADC, which is three times smaller than the conventional circuit. The proposed ADC has been fabricated in CMOS 65nm process. It achieves an overall size of 1355.7㎛2, power consumption of 2.6㎼ at a frequency of 100MHz, SNDR of 44.19 dB, and ENOB of 7.04bit.

V-band CPW 3-dB Directional Coupler using Tandem Structure (Tandem구조를 이용한 V-band용 CPW 3-dB 방향성 결합기)

  • Moon Sung-Woon;Han Min;Baek Tae-Jong;Kim Sam-Dong;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.41-48
    • /
    • 2005
  • We design and fabricate 3-dB tandem directional coupler using the coplanar waveguide structure which is applicable to balanced amplifiers and mixers for 60 GHz wireless local area network system. The coupler comprises the multiple-sectional parallel-coupled lines to facilitate the fabrication process, and enable smaller device size and higher directivity than those of the conventional 3-dB coupler employing the edge-coupled line. In this study, we adopt the structure of two-sectional parallel-coupled lines of which each single-coupled line has a coupling coefficient of -8.34 dB and airbridge structure to monolithically materialize the uniplanar coupler structure instead of using the conventional multilayer or bonded structure. The airbridge structure also supports to minimize the parasitic components and maintain desirable device performance in V-band (50$\~$75 GHz). The measured results from the fabricated couplers show couplings of 3.S$\~$4 dB and phase differences of 87.5$^{\circ}{\pm}1^{\circ}$ in V-band range and show directivities higher than 30 dB at a frequency of 60 GHz.

A Low-power EEPROM design for UHF RFID tag chip (UHF RFID 태그 칩용 저전력 EEPROM설계)

  • Yi, Won-Jae;Lee, Jae-Hyung;Park, Kyung-Hwan;Lee, Jung-Hwan;Lim, Gyu-Ho;Kang, Hyung-Geun;Ko, Bong-Jin;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.486-495
    • /
    • 2006
  • In this paper, a low-power 1Kb synchronous EEPROM is designed with flash cells for passive UHF RFID tag chips. To make a low-power EEPROM, four techniques are newly proposed. Firstly, dual power supply voltages VDD(1.5V) and VDDP(2.5V), are used. Secondly, CKE signal is used to remove switching current due to clocking of synchronous circuits. Thirdly, a low-speed but low-power sensing scheme using clocked inverters is used instead of the conventional current sensing method. Lastly, the low-voltage, VDD for the reference voltage generator is supplied by using the Voltage-up converter in write cycle. An EEPROM is fabricated with the $0.25{\mu}m$ EEPROM process. Simulation results show that power dissipations are $4.25{\mu}W$ in the read cycle and $25{\mu}W$ in the write cycle, respectively. The layout area is $646.3\times657.68{\mu}m^2$.

Design of Triple-Band Planar Monopole Antenna Having a Parasitic Element with Low SAR Using a Reflector (기생 소자를 이용한 3중 대역 모노폴 안테나 SAR 저감 설계)

  • Bong, HanUl;Hussain, Niamat;Jeong, MinJoo;Lee, SeungYup;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.3
    • /
    • pp.181-189
    • /
    • 2019
  • In this study, a triple-band antenna that can be used in WLAN(Wireless Local Area Network) at 2.4 GHz, 5.8 GHz, and 5G at 3.5 GHz is fabricated. The proposed antenna uses a parasitic element to show the triple band, and the reflector is used at a distance of ${\lambda}/4$ from the antenna to reduce the Specific Absorption Rate(SAR). Its dimensions are $100{\times}75{\times}1.6mm^3$ and each parameter value is optimized for better performance and a lower SAR value. As a result, we obtained a bandwidth of 540 MHz(2.02~2.56 GHz), 390 MHz(3.39~3.78 GHz), and 1,210 MHz(5.56~6.77 GHz) based on the reflection loss factor of -10 dB. In addition, the SAR values of the antenna with reflector are observed to reduce below the SAR value of international standard.