• Title/Summary/Keyword: FT-IR/FT-Raman

Search Result 123, Processing Time 0.034 seconds

A study on the crystallization processing of photosensitive glass by FT-IR and FT-Raman spectroscopy (FT-IR과 FT-Raman 분광계를 이용한 광민감유리의 결정화 과정에 관한 연구)

  • 이명원;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.284-288
    • /
    • 1997
  • FT-IR and FT-Raman spectra were measured for 15Li$_{2}$O.3Al$_{2}$O$_{3}$.78SiO$_{2}$. 4K$_{2}$O glass system after UV irradiations. Optimum UV irradiation time of Li$_{2}$O.SiO$_{2}$ crystalline phase was 60 seconds and crystalline phase of Li$_{2}$O.SiO$_{2}$ was leached out on 5% HF. 977 cm$^{1}$ band of FT-Raman spectra can be attributed to two-non bridging oxygen in unit cell for 1 hour and optimum crystallization was confirmed for 3 hrs, 630.deg. C.

  • PDF

FT-IR and Raman Spectroscopy for the Interaction between Poly(2-hydroxyethylmethacrylate) and Amino Acids (Poly(2-hydroxyethylmethacrylate)와 아미노산과의 상호작용에 관한 FT-IR과 Raman 분광학적 연구(II))

  • 김의락;정봉진
    • KSBB Journal
    • /
    • v.11 no.5
    • /
    • pp.557-564
    • /
    • 1996
  • The interaction between poly(2-hydroxyethylmethacrylate)(poly(HEMA)) which is a material of contact lens containing approximately 45%o water and water soluble amino acids (alanine, arginine, glycine, lysine, methionine, proline, and serine) was investigated by using FT-IR and Raman spectroscopy. The results revealed that arginine and lysine had the strongest interaction with poly(HEMA) among amino acids. The interaction depended on the quantity of charges on ammo acids. They interacted predominately with hydroxyl groups in poly(HEMA).

  • PDF

Analysis of Structure and Physical and Chemical Properties of the Carbonized Powder of Pine Wood (Pinus densiflora Sieb. et Zucc.) (II) - FT-IR, Raman - (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(II) - FT-IR, Raman -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.52-57
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of porous wood charcoal are studied by FT-IR and Raman spectroscopies. IR studies showed that cellulose and hemicellulose are mostly decomposed in the precarbonization stage at $500^{\circ}C$, while the decomposition reaction of relatively more stable lignin lasts up to $700^{\circ}C$. Above $900^{\circ}C$, the peak at $1575cm^{-1}$ disappears and a new peak at $1630cm^{-1}$, which seems to be related to the new carbon deposit phase, is evolved. The results of Raman studies, which show the red-shift of D-band and the increase in the relative intensity of D- to G-band, indicate that the size of the crystalline becomes smaller with increasing the carbonization temperature.

Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy (라만 및 FT-IR 현미경을 이용한 천일염 중 미세플라스틱 분석)

  • Cho, Soo-Ah;Cho, Won-Bo;Kim, Su-Bin;Chung, Jae-Hak;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.243-251
    • /
    • 2019
  • Microplastics (MP) are found in large quantities in the oceans, posing a major threat to the ecosystem. In Korea, MPs have been reported to be detected in sea salts. In order to analyze MPs, information on their composition, size, and shape is required. FT-IR microscopy is used frequently to measure sizes larger than 20 ㎛. Recently, however, Raman microscopy, which can analyze ultrafine plastics below 20 ㎛, has been applied extensively. In this study, 10.0 g samples of commercially available salts were dissolved and filtered through a 45 ㎛ mesh filter with a size of 25.4 mm × 25.4 mm. These filtered samples were then analyzed by both FT-IR microscopy and Raman microscopy. A total of four MPs, including three polyethylene (PE) of size 70-100 ㎛ and a polypropylene (PP) of size 170 ㎛, were detected by FT-IR microscopy, while 10 MPs, including nine PE of size 10-120 ㎛ and one polystyrene (PS) of size 40 ㎛, were detected by Raman microscopy. Approximately, 1,000 MPs/kg was estimated, which was almost two times higher than the previous reported levels (~550-681 particles/kg in sea salts); this is because Raman microscopy can detect much smaller MPs than FT-IR microscopy. A total of 113 particles were found using Raman microscopy: Carbon (35, 31.5 %), minerals (28, 25 %), and glass (16, 14.4 %) were dominant, forming around 70% of the total, but MPs (10, 8.8 %) and cellulose (5, 4.5 %) were also found. Raman microscopy has great potential as an accurate method for measuring MPs, as it can measure smaller size MPs than FT-IR microscopy. It also has a reduced sample preparation time.

Study on the Evaluation of Thermal Damage According to the Manufacturing Conditions of Korean Paper (한지의 제조 조건에 따른 열 손상 평가 연구)

  • Kim, Ji Won;Park, Se Rin;Han, Ki Ok;Jeong, Seon Hwa
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.648-658
    • /
    • 2021
  • In this study, we aimed to analyze the chemical changes that occur in Korean paper in an accelerated deterioration environment of 105℃. We selected the Korean paper produced with different types of cooking agents (plant lye, Na2CO3) and during different manufacturing seasons (winter, summer). The degree of deterioration of the Korean paper was confirmed by measuring the brightness, yellowness, and pH level, and the degree of change in each vibrational region of cellulose as deterioration progressed through infrared (FT-IR) spectroscopy. The FT-IR analysis showed that, as deterioration progressed, the absorbance of the amorphous region in cellulose decreased, whereas the absorbance of the crystalline region slightly increased. X-Ray diffraction (XRD) analysis and Raman spectroscopy were performed to verify the changes in the crystalline and amorphous regions in cellulose indicated by the FT-IR results. Furthermore, the crystallinity index (CI) was calculated; it showed a slight increase after deterioration; therefore, CI was confirmed to follow the same trend as that observed for absorbance in the FT-IR results. In addition, as a result of Raman spectroscopic analysis, the degree of decomposition of the amorphous region in the cellulose under the manufacturing conditions was confirmed by the fluorescence measured after the deterioration.

Structural Analysis of $Na_2O$-$Ga_2O_3$-$SiO_2$ System Glasses by FT-IR and Raman Spectroscopy (FT-IR 및 Raman 분광법에 의한 $Na_2O$-$Ga_2O_3$-$SiO_2$ 계 유리의 구조분석)

  • Whang, Chin-Myung;Rhee, Jhun;Bae, In-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.1
    • /
    • pp.27-34
    • /
    • 1988
  • In order to investigate the reason of changes in the physical properties of glasses near the region for which R(Ga/Na)=1, spectroscopic studies using FT-IR and Raman spectroscopy have been carried out on Na2O.2SiO2 glass with addition of Ga2O3 from 0 to 35 mole %, i.e., from R=0 to 1.61. The main purpose of this work is to investigate the coordination number of Ga3+ in glass with variation of glass composition and to determine the existence of tricluster in the Ga-rich region for which R>1.0 in Na2O-Ga2O3-SiO2 system.

  • PDF

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi;Sushma Kholiya;Himanshu Pandey;Ritu Joshi;Omia Emmanuel;Ameeta Tewari;Taehyun Kim;Byoung-Kwan Cho
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.675-696
    • /
    • 2023
  • Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

The Quantitative Analysis of SB Latex Contents in Coating Color and Coating Layer of Coated Paper Using FT/Raman Spectroscopy (FT/RAman을 이용한 도공액과 도공지의 도공층 내의 SB Latex 정량분석)

  • 이복진;정순기;윤동호;마금자
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.16-22
    • /
    • 1999
  • The quantitative analysis of SB latex contents in coating color and coated paper was investigated with FT/Raman spectroscopy. From the measured FT/IR and FT/Ramon spectra, the peaks of coating color were compared with those of each compoents . Calibration curves were obtained by the area of latex peaks and PLS method of QuantIR program. The relation of predicted values in PLS method and actual values in coating mixtures and coating layer was examined. The components of coating layer in coated paper were investigated by EDS , X-mapping and SEM, The contents of latex in z-direction were calculated in the coating layer of unknown coated paper. The latex concentration measurements of Top layer and Pre layer in double coated paper show that each layer has different value. In single coated paper, it is clear that the latex concentration is highest at the surface and decreases with an increase of depth. From those results it is indicated that the latex migrates to the coated surface. The result of this study may be applied to the binder migration study and the quality control in paper mill.

  • PDF

Study of Carbon Nanotubes Properties by Post-treatment Conditions (후처리 조건에 따른 탄소나노튜브 특성의 변화)

  • Choi Sung-Hun;Lee Jae-Hyeong;Yang Jong-Seok;Park Dae-Hee;Heo Jeong-Ku
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.930-934
    • /
    • 2006
  • This paper reports a change of carbon nanotubes(CNTs) properties by post-treatment process after growth of CNTs. CNTs were treated by thermal method and solution method, and then investigated in detail using field emission scanning electron microscopy(FE-SEM), high resolution transmission scanning electron microscopy(HR-TEM), RAMAN spectroscopy, and Fourier Transform Infrared Spectrometer (FT-IR). FT-IR spectra showed that the amount of hydroxyl generated on surface of CNTs were changed with post-treatment condition. FE-SEM and TEM images were shown CNTs diameter and density variations were dependent with their treatment conditions. RAMAN spectroscopy was shown that carbon nanotubes structure vary with treatment conditions.