DOI QR코드

DOI QR Code

A comparison of ATR-FTIR and Raman spectroscopy for the non-destructive examination of terpenoids in medicinal plants essential oils

  • Rahul Joshi (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Sushma Kholiya (Department of Chemistry, Moti Ram Babu Ram Government Post Graduate College Haldwani, Kumaun University) ;
  • Himanshu Pandey (Department of Chemistry, Moti Ram Babu Ram Government Post Graduate College Haldwani, Kumaun University) ;
  • Ritu Joshi (Department of Biochemistry and Biophysics, Texas A&M University) ;
  • Omia Emmanuel (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University) ;
  • Ameeta Tewari (Department of Chemistry, Moti Ram Babu Ram Government Post Graduate College Haldwani, Kumaun University) ;
  • Taehyun Kim (Department of Agriculture Engineering, National Institute of Agricultural Science, Rural Development Administration) ;
  • Byoung-Kwan Cho (Department of Biosystems Machinery Engineering, College of Agricultural and Life Science, Chungnam National University)
  • Received : 2023.08.14
  • Accepted : 2023.09.26
  • Published : 2023.12.01

Abstract

Terpenoids, also referred to as terpenes, are a large family of naturally occurring chemical compounds present in the essential oils extracted from medicinal plants. In this study, a nondestructive methodology was created by combining ATR-FT-IR (attenuated total reflectance-Fourier transform infrared), and Raman spectroscopy for the terpenoids assessment in medicinal plants essential oils from ten different geographical locations. Partial least squares regression (PLSR) and support vector regression (SVR) were used as machine learning methodologies. However, a deep learning based model called as one-dimensional convolutional neural network (1D CNN) were also developed for models comparison. With a correlation coefficient (R2) of 0.999 and a lowest RMSEP (root mean squared error of prediction) of 0.006% for the prediction datasets, the SVR model created for FT-IR spectral data outperformed both the PLSR and 1 D CNN models. On the other hand, for the classification of essential oils derived from plants collected from various geographical regions, the created SVM (support vector machine) classification model for Raman spectroscopic data obtained an overall classification accuracy of 0.997% which was superior than the FT-IR (0.986%) data. Based on the results we propose that FT-IR spectroscopy, when coupled with the SVR model, has a significant potential for the non-destructive identification of terpenoids in essential oils compared with destructive chemical analysis methods.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Smart Farm Innovation Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (421005-04). Further, we also give deep thanks for Department of Chemistry, M.B.G.P.G College Haldwani, Kumaun University Nainital-263139, Uttarakhand, India for their collaboration during plants sample collection and their essential oils extraction and later terpenoids determination using GC-FID chemical analysis methods.

References

  1. Allenspach MD, Valder C, Steuer C. 2020. Absolute quantification of terpenes in conifer-derived essential oils and their antibacterial activity. Journal of Analytical Science and Technology 11:12. DOI:10.1186/s40543-020-00212-y.
  2. Baranska M, Schulz H, Kruger H, Quilitzsch R. 2005. Chemotaxonomy of aromatic plants of the genus Origanum via vibrational spectroscopy. Analytical and Bioanalytical Chemistry 381:1241-1247. DOI:10.1007/s00216-004-3018-y.
  3. Chandra N, Singh G, Lingwal S, Bisht MPS, Tewari LM, Joshi VC. 2022. Ecological status of alpine medicinal and aromatic plants of western Himalaya. Journal of Herbs, Spices and Medicinal Plants 28:73-88. DOI:10.1080/10496475.2021.1963903.
  4. Chatzidakis M, Botton GA. 2019. Towards calibration-invariant spectroscopy using deep learning. Scientific Reports 9:2126. DOI:10.1038/s41598-019-38482-1.
  5. Chowdhry BZ, Ryall JP, Dines TJ, Mendham AP. 2015. Infrared and Raman spectroscopy of eugenol, isoeugenol, and methyl eugenol: Conformational analysis and vibrational assignments from density functional theory calculations of the anharmonic fundamentals. Journal of Physical Chemistry A 119:11280-11292. DOI:10.1021/acs.jpca.5b07607.
  6. Clevenger JF. 1928. Apparatus for the determination of volatile oil. The Journal of the American Pharmaceutical Association (1912) 17:345-349.
  7. Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning 20:273-297.
  8. Daferera DJ, Tarantilis PA, Polissiou MG. 2002. Characterization of essential oils from Lamiaceae species by Fourier transform Raman spectroscopy. Journal of Agricultural and Food Chemistry 50:5503-5507. DOI:10.1021/jf0203489.
  9. de Barros Fernandes RV, Borges SV, Botrel DA, de Oliveira CR. 2014. Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein-inulin blends as carriers. International Journal of Food Science and Technology 49:1522-1529. DOI:10.1111/ijfs.12449.
  10. Divyanth LG, Chakraborty S, Li B, Weindorf DC, Deb P, Gem CJ. 2022. Non-destructive prediction of nicotine content in tobacco using hyperspectral image-derived spectra and machine learning. Journal of Biosystems Engineering 47:106-117. DOI:10.1007/s42853-022-00134-0.
  11. Duvenaud D. 2014. The kernel cookbook: Advice on covariance functions. Accessed in https://www.cs.toronto.edu/~duvenaud/cookbook/ on 13 August 2023.
  12. Elzey B, Pollard D, Fakayode SO. 2016. Determination of adulterated neem and flaxseed oil compositions by FTIR spectroscopy and multivariate regression analysis. Food Control 68:303-309.
  13. Fuentes AM, Narayan A, Milligan K, Lum JJ, Brolo AG, Andrews JL, Jirasek A. 2023. Raman spectroscopy and convolutional neural networks for monitoring biochemical radiation response in breast tumour xenografts. Scientific Reports 13:1530. DOI:10.1038/s41598-023-28479-2.
  14. Garcia C, Montero G, Coronado MA, Valdez B, Stoytcheva M, Rosas N, Torres R, Sagaste CA. 2017. Valorization of eucalyptus leaves by essential oil extraction as an added value product in Mexico. Waste and Biomass Valorization 8:1187-1197. DOI:10.1007/s12649-016-9695-x.
  15. Greathead H. 2003. Plants and plant extracts for improving animal productivity. Proceedings of the Nutrition Society 62:279-290.
  16. Gutteridge JMC, Halliwell B. 2010. Antioxidants: Molecules, medicines, and myths. Biochemical and Biophysical Research Communications 393:561-564.
  17. Hanif MA, Nawaz H, Naz S, Mukhtar R, Rashid N, Bhatti IA, Saleem M. 2017. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130℃ using steam distillation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 182:168-174. DOI:10.1016/j.saa.2017.03.072.
  18. Huang X, Li H, Ruan Y, Li Z, Yang H, Xie G, Yang Y, Du Q, Ji K, Yang M. 2022. An integrated approach utilizing Raman spectroscopy and chemometrics for authentication and detection of adulteration of agarwood essential oils. Frontiers in Chemistry 10:1036082. DOI:10.3389/fchem.2022.1036082.
  19. Irshad M, Ali Subhani MA, Ali S, Hussain A. 2020. Biological importance of essential oils. Essential Oils-Oils of Nature. IntechOpen Limited, London, UK. DOI:10.5772/intechopen.87198.
  20. Jentzsch PV, Ciobota V. 2014. Raman spectroscopy as an analytical tool for analysis of vegetable and essential oils. Flavour and Fragrance Journal 29:287-295. DOI:10.1002/ffj.3203.
  21. Jindasa MHWN, Kahawalage AC, Halstensen M, Skeie NO, Jens KJ. 2021. Deep learning approach for Raman spectroscopy. Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization. IntechOpen Limited, London, UK. DOI:10.5772/intechopen.99770.
  22. Joshi R, Adhikari S, Son JP, Jang Y, Lee D, Cho BK. 2023a. Au nanogap SERS substrate for the carbaryl pesticide determination in juice and milk using chemomterics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 297:122734. DOI:10.1016/j.saa.2023.122734.
  23. Joshi R, Baek I, Joshi R, Kim MS, Cho BK. 2022. Detection of fabricated eggs using Fourier transform infrared (FT-IR) spectroscopy coupled with multivariate classification techniques. Infrared Physics and Technology 123:104163. DOI:10.1016/j.infrared.2022.104163.
  24. Joshi R, Joshi R, Amanah HZ, Faqeerzada MA, Jayapal PK, Kim G, Baek I, Park ES, Masithoh RE, Cho BK. 2021. Quantitative analysis of glycerol concentration in red wine using Fourier transform infrared spectroscopy and chemometrics analysis. Korean Journal of Agricultural Science 48:299-310. DOI:10.7744/kjoas.20210023.
  25. Joshi R, Joshi R, Mo C, Faqeerzada MA, Amanah HZ, Masithoh RE, Kim MS, Cho BK. 2020. Raman spectral analysis for quality determination of grignard reagent. Applied Sciences 10:3545. DOI:10.3390/app10103545.
  26. Joshi R, Lakshmi Priya GG, Faqeerzada MA, Bhattacharya T, Kim MS, Baek I, Cho BK. 2023b. Deep learning-based quantitative assessment of melamine and cyanuric acid in pet food using Fourier transform infrared spectroscopy. Sensors 23:5020. DOI:10.3390/s23115020.
  27. Jung DH, Kim NY, Moon SH, Kim HS, Lee TS, Yang JS, Lee JY, Han X, Park SH. 2021. Classification of vocalization recordings of laying hens and cattle using convolutional neural network models. Journal of Biosystems Engineering 46:217-224. DOI:10.1007/s42853-021-00101-1.
  28. Kawamura K, Nishigaki T, Andriamananjara A, Rakotonindrina H, Tsujimoto Y, Moritsuka N, Rabenarivo M, Razafimbelo T. 2021. Using a one-dimensional convolutional neural network on visible and near-infrared spectroscopy to improve soil phosphorus prediction in Madagascar. Remote Sensing 13:1519. DOI:10.3390/rs13081519.
  29. Kholiya S, Pandey H, Pargaien N, Tiwari A. 2022. A survey of some medicinal trees in Nandhaur valley region of district Nainital in Uttarakhand, India, and study on their phytochemistry and ethnobotanical importance. Academia Journal of Medicinal Plants 10:149-164.
  30. Kim G, Lee H, Baek I, Cho BK, Kim MS. 2022. Short-wave infrared hyperspectral imaging system for nondestructive evaluation of powdered food. Journal of Biosystems Engineering 47:223-232. DOI:10.1007/s42853-022-00141-1.
  31. Kumar A, Jnanesha AC. 2016. Medicinal and aromatic plants biodiversity in India and their future prospects: A review. Indian Journal Unani Medicine 9:10-17.
  32. Li P, Ma J, Zhong N. 2021. Raman spectroscopy combined with support vector regression and variable selection method for accurately predicting salmon fillets storage time. Optik 247:167879.
  33. Lohumi S, Joshi R, Kandpal LM, Lee H, Kim MS, Cho H, Mo C, Seo YW, Rahman A, Cho BK. 2017. Quantitative analysis of Sudan dye adulteration in paprika powder using FTIR spectroscopy. Food Additives & Contaminants: Part A 34:678-686. DOI:10.1080/19440049.2017.1290828.
  34. Lotfollahi M, Berisha S, Daeinejad D, Mayerich D. 2019. Digital staining of high-definition FTIR images using deep learning. Applied Spectroscopy 73:556-564. DOI:10.1177/0003702818819857.
  35. Luo R, Popp J, Bocklitz T. 2022. Deep learning for Raman spectroscopy: A review. Analytica 3:287-301. DOI:10.3390/analytica3030020.
  36. Masruri, Rahman MF, Ramadhan BN. 2016. Acidity-controlled selective oxidation of alpha-pinene, isolated from Indonesian pine's turpentine oils (pinus merkusii). In Proceeding of IOP Conference Series: Materials Science and Engineering 107:012060. DOI:10.1088/1757-899X/107/1/012060.
  37. Medvecka V, Mosovska S, Mikulajova A, Valik L, Zahoranova A. 2020. Cold atmospheric pressure plasma decontamination of allspice berries and effect on qualitative characteristics. European Food Research and Technology 246:2215-2223. DOI:10.1007/s00217-020-03566-0.
  38. Meng J, Chen X, Yang W, Song J, Zhang Y, Li Z, Yang X, Yang Z. 2014. Gas chromatography-mass spectrometry analysis of essential oils from five parts of Chaihu (Radix Bupleuri Chinensis). Journal of Traditional Chinese Medicine 34:741-748. DOI:10.1016/s0254-6272(15)30090-x.
  39. Michel J, Abd Rani NZ, Husain K. 2020. A review on the potential use of medicinal plants from asteraceae and lamiaceae plant family in cardiovascular diseases. Frontiers in Pharmacology 11:1-26. DOI:10.3389/fphar.2020.00852.
  40. Ndhlala AR, Moyo M, Van Staden J. 2010. Natural antioxidants: Fascinating or mythical biomolecules? Molecules 15:6905-6930.
  41. Patel AK, Ghosh JK, Pande S, Sayyad SU. 2020. Deep-learning-based approach for estimation of fractional abundance of nitrogen in soil from hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:6495-6511. DOI:10.1109/JSTARS.2020.3039844.
  42. Porel A, Sanyal Y, Kundu A. 2014. Simultaneous HPLC determination of 22 components of essential oils; Method robustness with experimental design. Indian Journal of Pharmaceutical Sciences 76:19-30.
  43. Putra BTW, Amirudin R, Marhaenanto B. 2022. The evaluation of deep learning using convolutional neural network (CNN) approach for identifying arabica and robusta coffee plants. Journal of Biosystems Engineering 47:118-129. DOI:10.1007/s42853-022-00136-y.
  44. Rinnan A, van den Berg F, Engelsen SB. 2009. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry 28:1201-1222. DOI:10.1016/j.trac.2009.07.007.
  45. Riyanto, Sastrohamidjojo H, Fariyatun E. 2016. Synthesis of methyl eugenol from crude cloves leaf oil using acid and based chemicals reactions. IOSR Journal of Applied Chemistry 9:105-112.
  46. Rodriguez-Maecker R, Vyhmeister E, Meisen S, Martinez AR, Kuklya A, Telgheder U. 2017. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry. Analytical and Bioanalytical Chemistry 409:6595-6603. DOI:10.1007/s00216-017-0613-2.
  47. Samarth RM, Samarth M, Matsumoto Y. 2017. Medicinally important aromatic plants with radioprotective activity. Future Science OA 3: FSO247. DOI:10.4155/fsoa-2017-0061.
  48. Seo Y, Mo C, Lim J, Lee A, Kim B, Jang J, Kim G. 2021. Detection of spinach juice residues on stainless steel surfaces using VNIR hyperspectral images. Journal of Biosystems Engineering 46:173-181. DOI:10.1007/s42853-021-00097-8.
  49. Siatis NG, Kimbaris AC, Pappas CS, Tarantilis PA, Daferera DJ, Polissiou MG. 2005. Rapid method for simultaneous quantitative determination of four major essential oil components from oregano (Oreganum sp.) and thyme (Thymus sp.) using FT-Raman spectroscopy. Journal of Agricultural and Food Chemistry 53:202-206. DOI:10.1021/jf048930f.
  50. Sihalath T, Basak JK, Bhujel A, Arulmozhi E, Moon BE, Kim HT. 2021. Pig identification using deep convolutional neural network based on different age range. Journal of Biosystems Engineering 46:182-195. DOI:10.1007/s42853-021-00098-7.
  51. Sufriadi E, Meilina H, Munawar AA, Idroes R. 2021. Fourier transformed infrared (FTIR) spectroscopy analysis of patchouli essential oils based on different geographical area in Aceh. In Proceeding of IOP Conference Series: Materials Science and Engineering 1087:012067. DOI:10.1088/1757-899X/1087/1/012067.
  52. Valderrama ACS, Rojas De GC. 2017. Traceability of active compounds of essential oils in antimicrobial food packaging using a chemometric method by ATR-FTIR. American Journal of Analytical Chemistry 8:726-741. DOI:10.4236/ajac.2017.811053.
  53. Wang M, Zhao M, Chen J, Rahardja S. 2019. Nonlinear unmixing of hyperspectral data via deep autoencoder networks. IEEE Geoscience and Remote Sensing Letters 16:1467-1471. DOI:10.1109/lgrs.2019.2900733.
  54. Wold S, Sjostrom M, Eriksson L. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58:109-130. DOI:10.1016/S0169-7439(01)00155-1.
  55. Wu X, Xu B, Ma R, Niu Y, Gao S, Liu H, Zhang Y. 2022. Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 274:121133. DOI:10.1016/j.saa.2022.121133.