• Title/Summary/Keyword: FRP concrete

Search Result 751, Processing Time 0.026 seconds

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.

Flexural Behavior of R.C Beams Retrofitted with Hybrid FRP(Fiber Reinforced Polymer) (Hybrid FRP(Fiber Reinforced Polymer)로 보강된 철근 콘크리트 보의 휨거동에 관한 연구)

  • 박은정;신영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.515-520
    • /
    • 2001
  • This study discusses the flexural performance of rehabilitated composite sections, consisting originally of R/C beams and subsequently strengthened by, Hybrid Fiber Reinforced Polymers(FRPs) and adhesives. Experimentations were peformed with 8 specimens to compare the rehabilitated effect of the length of FRPs, 2plies of FRPs, and 3plies of FRPs. The results show that the increase of the FRP strengthening length is effective on the flexural capacity and strength. Also, R.C beams retrofitted with hybrid FRPs are more effective on the increase of flexural capacity, strength, stiffness, and ductility than with a single kind of FRPs.

  • PDF

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

Consideration on Bond Behavior of FRP Rebars with Various Surface Treatments and Deformation Shapes (FRP 보강근의 표면처리 및 돌기형상에 따른 부착거동 특성 비교)

  • You, Young-Jun;Park, Ji-Sun;Park, Young-Hwan;Kim, Keung-Hwan;Kim, Hyeong-Yeol;You, Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.122-125
    • /
    • 2006
  • This paper presents the comparison of the bond behavior of various FRP rebars. A total of 9 specimens including steel reinforcement were tested through direct pull-out test procedure. The test results have revealed that the bond behavior was affected by the deformation shapes and surface treatments. The newly proposed FRP rebar by KICT showed good bond strength and ductile behavior after failure.

  • PDF

Comparative Study on Test Method of Pot Life of Structural Adhesives for FRP Composite Material used in Strengthening RC Members (구조보강용 FRP 함침.접착수지의 사용가능시간 시험방법 비교 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.353-356
    • /
    • 2006
  • Hardening of 2 component adhesive such as epoxy resin used in saturating FRP composite is triggered by mixing each component part within a batch. Chemical reactions occur explosively after a certain time after mixing the batch, viscosity and temperature rapidly increase. As a results, bond performance remarkably decreases and workability declines due to increase in viscosity. Therefore, adhesion should be completed before chemical hardening reaction is rapidly going on. This study examined pot life of structural adhesive for FRP composites by means of change in apparent viscosity and means of exothermic reaction temperature proposing in existing test standards. Result of each test method was compared and analyzed, and reasonable test method and evaluation method are suggested.

  • PDF

Bond Characteristics of Hybrid Fiber Polymer Reinforcing bars with Different Relative Rib Area (하이브리드 FRP 보강근의 상대 리브면적에 따른 부착 특성)

  • Park Ji Sun;You Young Chan;Park Young Hwan;You Young Jun;Kim Hyeong Yeol;Kim Keung Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.201-204
    • /
    • 2005
  • The bond characteristics of two types hybrid FRP (fiber reinforced polymer) reinforcing bars with different rib geometry were analyzed experimentally. Two types of hybrid FRP. reinforcing bars such as spiral and cross type with different relative rib area were considered in this test. All testing procedures including specimens preparation, set-up of test equipments and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found' that cross type hybrid FRP reinforcing bars showed the higher bond strength than that of spiral type's due to the higher relative rib area.

  • PDF

An Experimental Study on Seismic Retrofitting of RC Beam-Column Connections with Carbon FRP (탄소 FRP를 이용한 철근콘크리트 보-기둥 접합부의 내진 성능 보강 실험)

  • Kim Min;Lee Kihak;Lee Jae-Hong;Woo Sung-Woo;Lee Jung-Wean
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.263-266
    • /
    • 2005
  • Many RC structures built without seismic provisions have exhibited brittle shear failures in the beam-column joint area, and resulted in large permanent deformations and structural collapse. This paper presents the results of an experimental investigation pertaining to the use of carbon fiber-reinforced polymer(FRP) for strengthening of RC beam-column connections. The selective upgrade is obtained by choosing different combinations and locations of carbon FRP sheets to determine the effective way to improve the structural performance of joints. Experimental results demonstrate significant improvement of flexural capacity and ductility of beam-column connections originally built without seismic details.

  • PDF

A Study on the Development Length of Fiber Reinforced Polymer Tendon by Direct Pullout Test (직접인발실험에 의한 FRP Tendon의 정착 길이 산정에 관한 연구)

  • Lee, Seung-Joo;Jung, Woo-Tai;Park, Young-Hwan;Hwang, Geum-Sic
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.837-840
    • /
    • 2006
  • This paper presents the experimental results on the development length of FRP tendons by direct pullout test. Two types of FRP tendons, namely, CFCC tendon and KICT tendon, and PS tendon were investigated. The development length defined as the minimum embedment length required to develop the ultimate tensile strength was suggested using the test results. It was found that the development length from the direct pullout test was greater than those of various standards. This may result from the fact that the wedge effect does not exist because there is no prestressing force in the direct pullout test. Further study and experiment are necessary to derive the reasonable development length for FRP tendon.

  • PDF

Fracture behaviors of R/C Beam Strengthened with FRP- Rod and GSP (FRP-Rod와 GSP로 보강된 철근 콘크리트보의 파괴 거동)

  • Kim, Chung-Ho;Ko, Sin-Woong;Hwang, Yun-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.181-184
    • /
    • 2006
  • In this investigation, fracture mechanism of the pre-cracked beams strengthened with FRP-Rod and GSP(Glass Fiber-Steel Plate) were experimentally studied by the repeating load test according to the three different loading speeds. In the experiments, it was identified that pre-crack in the damaged beams led the significant fracture type of the strengthened beams and loading speed did not influence the behaviors of the fractures. On the other hand, strengthened beams by GSP have more large increasing effects of the strength comparing to beams strengthened with FRP-Rod, but they have a brittle behaviors in fracture.

  • PDF

Experimental Study on Flexural Behavior of RC Slab Strengthened by FRP Sheet and GSP (FRP 쉬트 및 GSP로 보강된 RC 슬래브의 휨거동에 관한 실험적 연구)

  • Ahn, Ki-Man;Kim, Kwang-Soo;Kim, Tae-Wan;Park, Sun-Kyu;Lee, Young-Jae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.185-188
    • /
    • 2006
  • Recently, an improved capacity for RC bridges is required by their deterioration or necessary to carry traffic increase. Strengthening is known as a better way to improve capacity of bridges than reconstructing. Fiber Reinforced Plastics (FRP) is introduced as one of the best strengthening structures in this paper. It is also known as an economical improvement. Therefore, FRP sheet and Glass Fiber-Steel Composite Plate (GSP) in this research were used in strengthening slab of RC bridges. Experimental data from the strengthening will be helpful to better understand the slab behavior and an effect of the strengthening.

  • PDF