• Title/Summary/Keyword: FRP Composite Materials

Search Result 200, Processing Time 0.027 seconds

Study on the Bending Test of Glulam Beam Reinforced with GFRP Strips (복합재료로 보강된 집성보의 휨 실험에 대한 연구)

  • Kim, Young-Chan;Davalos, Julio F.
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • A recent application of advanced composite materials, primarily fiber-reinforced plastic (FRP) composites, in structures is the reinforcement of conventional structural materials, such as concrete and glued-laminated timber (glulam), to increase their performance. In particular, the construction of large-scale glulam structures usually requires members with large depths and to significantly increase the stiffness and strength of glulam, the members can be reinforced with FRP at top and bottom surfaces. In this paper, glulam beams reinforced with GFRP strip are tested under 2-point bending and results are compared with numerical solution using layer-wise beam theory.

  • PDF

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC (현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정)

  • Seon-Ju Kim;Beom-Joo Lee;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.

Nonlinear Analysis of FRP Strengthened Reinforced Concrete Columns by Force-Based Finite Element Model (하중기반 유한요소모델에 의한 FRP 보강 철근콘크리트 기둥의 비선형 해석)

  • Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.529-537
    • /
    • 2013
  • The aim of the current study is to develop a nonlinear isoparametric layered frame finite element (FE) analysis of FRP strengthened reinforced concrete (RC) beam or column members by a force-based FE formulation. In sections, concrete is modeled in the triaxial stress-strain relationship state and the FRP sheet is modeled as layered composite materials in two-dimension. The element stiffness matrix derived by the force-based FE has the force-interpolation functions without assuming the displacement shape functions. A lateral load test of RC column strengthened by GFRP sheets was analyzed by the developed force-based FE model. From comparative studies of the experimental and analysis results, it was shown to compare with the stiffness FE method that the force-based FE analysis could give more accurate predictions in the overall lateral load-deflection response as well as in nonlinear deformations and damages in the column plastic hinge region.

Development of Element Technique for the Floating PV Generation Structure Using FRP (FRP를 활용한 수상 부유식 태양광발전 구조물의 요소기술 개발)

  • Seo, Su-Hong;Choi, Jin-Woo;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.103-108
    • /
    • 2014
  • Fiber reinforced polymer plastic (FRP) structural members are recently available in construction industries due to various material properties such as high specific strength and stiffness, light-weight, and corrosionresistance. The floating PV generation structure can also be an illustration for applying FRP in construction applications. The floating PV generation structure has been recently issued as a representative item for the low carbon and green growth campaign and many related studies have been conducted for the structural safety and commercial viability. Moreover, the floating PV generation structures for the commercial purpose have been constructed. In this paper, the investigation and development processes of elements for the floating PV generation structure are presented during commercialization.

Freezing-Thawing Resistance of Fiber Reinforced Polymers in Strengthening RC Members (구조보강용 FRP 복합체의 동결용해 저항성 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.182-189
    • /
    • 2010
  • The strengthening performance of FRPs(Fiber Reinforced Polymers) is directly affected by the environmental conditions such as freezing-thawing and moisture because FRPs are usually bonded on the concrete surface. It is, therefore, strongly required to evaluate a durability of bond between FRPs and concrete as well as FRP materials itself. The freezing-thawing resistance of FRPs is evaluated in this study with the variables of freezing-thawing conditions, types of FRP and freezing-thawing cycles. From the test results, it is found that tensile strength and pull-off strength of CFRP are not affected by the freezing-thawing. On the other hands, those of GFRP show a little degradation because of continuous water immersion during thawing process. But, cautions are needed on the bond durability between FRPs and concrete in case of continuous water supplying from adjacent to the concrete.

Optimum Design of New Type Offshore Wind Power Tower Structure (신형식 해상풍력 구조체 최적 설계)

  • Han, Taek-Hee;Yoon, Gil-Lim;Won, Deok-Hee;Oh, Young-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.388-389
    • /
    • 2012
  • Current offshore wind power towers are made of steel. As the capacity of wind power increases, the tower structures become higher. Steel structures have buckling problem and their increased slenderness ratios make them weak against buckling and vibration. In this study, double skinned composite tubular (DSCT) offshore wind power tower was proposed and its optimum design method was suggested. Fiber reinforced polymer (FRP) and steel were considered as material of the tubes. And both materials satisfied the required capacity.

  • PDF

A Experimental Estimation of Thermal Fatigue at Polyethylene Boat (폴리에틸렌 보트의 열피로 손상의 실험적 평가)

  • Cho, Seok Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2559-2565
    • /
    • 2013
  • Material of boat hull has been used mainly with FRP composite materials until now. FRP boat hull manufacturing began to be restricted after the 2000's under international regulation on ocean environment safety. Shipyard on a small scale has manufactured polyethylene canoe and kayak hulls. Polyethylene has the melting point lower than the existing hull materials. Thermal stress occurs on outer hull surface when the polyethylene boat hull is exposed to sunlight. If it happens everyday, boat hull undergoes fatigue damage due to thermal fatigue. Therefore, this study presents the statistical fatigue life estimation on the HDPE boat hull subject to repeated thermal stress under three point bending condition.

Partial sectional confinement in a quasi-encased steel-concrete composite beam

  • Hassanzadeh, Amir Masoud;Dehestani, Mehdi
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.269-278
    • /
    • 2018
  • In the recent decades, the application of composite materials, due to their desirable properties, has increased dramatically. In the present study, a quasi-encased trapezoidal section composite steel beam encased with concrete is thoroughly examined. Calculation of the load bearing capacity is carried out by finite element modeling of concrete and FRP beams with trapezoidal section under the effect of controlled displacement loading. The results are then validated comparing to the existing experimental results obtained from similar studies. Further on, the materials are changed to steel and concrete, and the section is de-signed in such a way that both concrete and steel reach a high percent-age of their load bearing capacity. In the last step, the parameters affecting the bending capacity and the behavior of the semi-confined composite beam are investigated. Results revealed that the beam diagonal web thickness plays the most effective role in load bearing capacity amongst other studied parameters. Furthermore, by analyzing the results on the effect of different parameters, an optimal model for primary beam section is presented, which exhibits a greater load bearing capacity compared to the initial design with the same amount of materials used for both sections.

Effects of Heat Treatment on Electrical and Mechanical Properties of Glass Fiber Reinforced Epoxy (열처리가 유리섬유 강화 복합재료의 전기적 및 기계적 성질에 미치는 영향)

  • 이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.174-180
    • /
    • 1998
  • In this work, the properties of FRP, which is applied recently in the composite insulating materials, by thermal treatment were investigated. The specimens were epoxy glass laminates fabricated by thermal press method and had the volume content of 46[%] cutted $45^{\circ}C$ in the fiber direction and 1.0[mm] thickness. The experimental results showed that the amount of weight loss, wettability, surface potential, and surface resistivity increased up to 200[$^{\circ}C$] as a function of temperature. Usually, most degradations caused the hydrophilic to decrease the contact angle. But, in this work on thermal-degradated FRP, we can confirm the introduction of hydrophobic properties by cross-linking and the ablation of polar small-molecules rather than chain scission and oxidation. Finally, weight loss and contact angle increased. These phenomena show the existence of hydrophobic surface. With the change to the hydrophobic surface and the electrical potential and resistivity on FRP surface increased. But, the dielectric properties and tensile stength are decreased.

  • PDF

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.