• Title/Summary/Keyword: FRACTAL

Search Result 973, Processing Time 0.02 seconds

Reseach on Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF measurements (PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구)

  • Cho, Yong-Jin;Kin, Ji-Ho;Cho, Tae-Young;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-9
    • /
    • 2002
  • Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.

  • PDF

Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis (노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰)

  • Seo, Beom Gyo;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.

Estimation of Permeability Coefficient Using Fractal Dimension of Particle Size Distribution Curve in Granular Soils (조립토 입도분포곡선의 프랙탈차원을 이용한 투수계수의 예측)

  • Park Jae-Seong;Chang Pyoung-Wuck;Son Young-Hwan;Kim Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.41-49
    • /
    • 2006
  • Since particle size distribution curves are useful to estimate permeability of soil, many formulae for permeability coefficient (k) have been published using the parameter from the curves and factors, such as grain size, particle shape and void ratio of soils. However, the parameters such as $C_c,\;C_u$ and $D_n$ derived from only some discrete points on the curve are insufficient to represent the whole gradation. In this paper fractal dimension which is quite new concept and known to be able to represent the entire curve of particle size distribution is employed for the parameters. An empirical formula of permeability coefficient has been developed with fractal dimension and percent of finer than 0.075 mm. The formula developed from this study has confirmed its effectiveness by a series of laboratory tests and comparison to other published formulae. It is found that permeability coefficient is proportional to fractal dimension and inversely proportional to percent of fines.

Change of the fractal dimension according to the decalcification degree and the exposure time in the bovine rib (소의 늑골에서 탈회정도와 노출시간에 따른 프랙탈 차원의 변화)

  • Jung Yun-Hoa;Nah Kyung-Soo;Cho Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.36 no.2
    • /
    • pp.69-72
    • /
    • 2006
  • Purpose : We evaluated the fractal dimension changes on bovine rib radiographs according to the decalcification degree and the exposure time in the bovine rib. Materials and Methods : Twenty 5 mm thick cross-sectional blocks from bovine rib bone were progressively decalcified in 30 mL 0.1 N hydrochloric acid for 5, 30, and 90 minutes. They were radiographed at three exposure time settings (0.22, 0.36, 0.43 mAs) before and after each decalcification stage. We selected $100{\times}100$ pixel-sized regions of interests (ROIs) on trabecular bone and calculated fractal dimensions by box-counting method. Results : Repeated measures ANOVA showed that fractal dimensions gradually decreased after acid-induced demineralization and with more exposure (P<0.001). Conclusion : The fact that fractal dimensions decrease after decalcification might support the hypothesis that patients with osteoporosis have decreased radiographic fractal dimension in trabecular bone in comparison to normal subjects.

  • PDF

FRACTAL DIMENSIONS OF INTERSTELLAR MEDIUM: I. THE MOLECULAR CLOUDS IN THE ANTIGALACTIC CENTER

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.137-141
    • /
    • 2004
  • We have estimated the fractal dimension of the molecular clouds in the Antigalactic Center based on the $^{12}CO$ (J = 1- 0) and $^{13}CO$ (J = 1- 0) database obtained using the 14m telescope at Taeduk Radio Astronomy Observatory. Using a developed code within IRAF, we were able to identify slice-clouds, and determined the dispersions of two spatial coordinates as well as perimeters and areas. The fractal dimension of the target region was estimated to be D = 1.34 for low resolution $^{12}CO$ (J = 1 - 0) database, and D = 1.4 for higher resolution $^{12}CO$ (J = 1 - 0) and $^{13}CO$ (J = 1 - 0) database, where $P {\propto} A^{D/2}$. The sampling rate (spatial resolution) of observed data must be an important parameter when estimating fractal dimension. Our database with higher resolution of 1 arcminute, which is corresponding to 0.2 pc at a distance of 1.1 kpc, gives us the same estimate of fractal dimension to that of local dark clouds. Fractal dimension is apparently invariant when varying the threshold temperatures applied to cloud identification. According to the dispersion pattern of longitudes and latitudes of identified slice-clouds, there is no preference of elongation direction.

The New Estimation Methods for Outdoor MV Class Equipment Using Chaos/Fractal Mathematics (Chaos/Fractal 수학을 이용한 옥외용 설비의 정량적 평가법 제안)

  • Kim, Jin-Gook;Lim, Jang-Seob;Kim, Hyun-Jong;Lee, Jin;Song, Il-Keun;Lee, Jae-Bong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.567-570
    • /
    • 2003
  • Fractal mathematics is being highlighted as a research method for classification of image. But the application of Fractal dimension(FD) has been required the complicated calculation method because of its complex repetition progressing. In this paper, it has been developed the new approach method to express the Fractal Dimension(FD) for aging level calculation and estimation system of outside insulator using special image processing algorithm. As a result after FD testing, the recognized aging estimation of FD has a very characteristics compared to the conventional visual inspection.

  • PDF

A Study on the Holter Data Compression Algorithm -Using Piecewise Self-Affine Fractal Model- (Holter Data 압축 알고리즘에 관한 연구 -Piecewise Self-Affine Fractal Model을 이용한-)

  • 전영일;정형만
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 1995
  • This paper presents a new compression method (or ECG data using iterated contractive transformations. The method represents any range of ECG signal by piecewise self-afrine fractal Interpolation (PSAFI). The piecewise self-afrine rractal model is used where a discrete data set is viewed as being composed of contractive arfine transformation of pieces of itself. This algorithm was evaluated using MIT/BIH arrhythmia database. PSAFI is found to yield a relatively low reconstruction error for a given compression ratio than conventional direct compression methods. The compression ratio achieved was 883.9 bits per second (bps) - an average percent rms difference (AFRD) of 5.39 percent -with the original 12b ECG samples digitized at 400 Hz.

  • PDF

Direct Visualization of Temperature Profiles in Fractal Microchannel Heat Sink for Optimizing Thermohydrodynamic Characteristics (온도 프로파일 가시화를 통한 프랙탈 구조 마이크로채널 히트싱크의 열수력학적 특성 최적화)

  • Hahnsoll Rhee;Rhokyun Kwak
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.79-84
    • /
    • 2024
  • As microchips' degree of integration is getting higher, its cooling problem becomes important more than ever. One of the promising methods is using fractal microchannel heat sink by mimicking nature's Murray networks. However, most of the related works have been progressed only by numerical analysis. Perhaps such lack of direct experimental studies is due to the technical difficulty of the temperature and heat flux measurement in complex geometric channels. Here, we demonstrate the direct visualization of in situ temperature profile in a fractal microchannel heat sink. By using the temperature-sensitive fluorescent dye and a transparent Polydimethylsiloxane window, we can map temperature profiles in silicon-based fractal heat sinks with various fractal scale factors (a=1.5-3.5). Then, heat transfer rates and pressure drops under a fixed flow rate were estimated to optimize hydrodynamic and thermal characteristics. Through this experiment, we found out that the optimal factor is a=1.75, given that the differences in heat transfer among the devices are marginal when compared to the variances in pumping power. This work is expected to contribute to the development of high-performance, high-efficiency thermal management systems required in various industrial fields.

Fractal Analysis of Tidal Channel using High Resolution Satellite Image (고해상도 위성 영상을 이용한 조류로의 프랙털 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.567-573
    • /
    • 2007
  • Tidal channel development is influenced by sediment type, grain size, composition and tidal current. Tidal channels are usually characterized by channel formation, density and shape. Quantitative analysis of tidal channels using remotely sensed data have rarely been studied. The objective of this study is to quantify tidal channels in terms of fractal dimension and compare different inter-tidal channel patterns and compare with DEM (Digital Elevation Model). For the fractal analysis, we used box counting method which had been successfully applied to streams, coastlines and others linear features. For a study, the southern part of Ganghwado tidal flats was selected which know for high dynamics of tidal currents and vast tidal flats. This area has different widths and lengths of tidal channels. IKONOS was used for extracting tidal channels, and the box counting method was applied to obtain fractal dimensions (D) for each tidal channel. Yeochari area where channels showed less dense development and low DEM had low fractal dimenwion near $1.00{\sim}1.20$. Area (near Donggumdo and Yeongjongdo) of dendritic channel pattern and high DEM resulted in high fractal dimension near $1.20{\sim}1.35$. The difference of fractal dimensions according to channel development in tidal flats is relatively large enough to use as an index for tidal channel classification. Therefore we could conclude that fractal dimension, channel development and DEM in tidal channel has high correlation. Using fractal dimension, channel development and DEM, it would be possible to quantify the tidal channel development in association with surface characteristics.

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.