DOI QR코드

DOI QR Code

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin

페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석

  • 김전원 (숭실대학교 전기공학과) ;
  • 박상택 (숭실대학교 대학원 전기공학과) ;
  • 노영수 (숭실대학교 전기공학부)
  • Published : 2010.01.31

Abstract

When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

페놀수지가 그 표면에 흐르는 누설전류에 의하여 탄화되는 경우 탄화패턴은 페놀수지의 탄화특성을 결정하는 가장 중요한 인자 중의 하나이다. 그러나 전형적인 페놀수지의 탄화패턴은 매우 복잡하기 때문에 종래의 유클리드 기하학을 이용하여 해석하는 것은 어려운 일이다. 이와 같이 복잡한 형태는 대부분의 경우 프랙탈 구조를 나타낸다. 따라서 주어진 페놀수지에 대한 탄화패턴의 특성을 프랙탈 해석으로 규명할 수 있다. 본 논문에서는 누설전류에 의하여 탄화된 페놀수지의 탄화패턴을 정량적으로 조사하기 위하여 누설전류의 크기와 전극간격의 함수로서 탄화패턴의 프랙탈 차원을 계산하였다. 계산의 신뢰성을 위하여 박스 카운팅 방법뿐만 아니라 상관함수를 이용하여 프랙탈 차원을 구하였다. 계산 결과에 따르면 전극간격을 일정하게 유지한 상태에서 전류가 증가하면 프랙탈 차원은 증가하였다. 반면, 전류가 일정할 때 전극간격과 프랙탈 차원 사이에는 큰 관련성이 없었다.

Keywords

References

  1. Kil-Mok Shong, Young-Su Roh, Hee-Ro Kwak, “Surface Discharge Characteristics of Phenolic Resin Treated by Heat and Its Structure Analysis”, Journal of the Korean Institute of IIIuminating and Electrical Installation Engineers Vol. 20, No.8, pp. 71-79 September 2006. https://doi.org/10.5207/JIEIE.2006.20.8.071
  2. Park, Young-Su Roh, “A Study on the Characteristics of Organic Insulating Materials Carbonized by a Leakage Current”, Journal of the Korean Institute of IIIuminating and Electrical Installation Engineers Vol. 23, No.2, pp. 161-167 February 2009. https://doi.org/10.5207/JIEIE.2009.23.2.161
  3. B. B. Mandelbrot, “The Fractal Geometry of Nature”, Freeman and Co., New York, 1993.
  4. A. Bundle and S. Havlin, "Fractals in Science", Springer-Verlag, Berlin, 1994.
  5. J. Feder, "Fractals", Plenum Press, New York, 1988.
  6. L. Niemeyer, L. Pietronero, and H. J. Wiesmann, “Fractal Dimension of Dielectric Breakdown”, Vol. 52, N0. 12, 1984.
  7. L Kebbabi and A Beroual, “Fractal analysis of creeping discharge patterns propagating at solid/liquid interfaces : influence of the nature and geometry of solid insulators”, J. Phys. D: Appl. Phys. 39 pp177-183, 2006. https://doi.org/10.1088/0022-3727/39/1/026
  8. A. L. Barclay, P. J. Sweeney, L. A.. Dissado and G. C. Stevens, “Stochastic Modeling of Electrical Treeing: Fractal and statistical Characteristics”, J. Phys. D:Appl. Phys, Vol. 23, pp. 1536-1545, 1990. https://doi.org/10.1088/0022-3727/23/12/009
  9. M. Fujii, M, M. Watanabe and I. Kitani, “Fractal Character of dc Trees in Polymethylmethacrylate”, IEEE Trans. Elect. Insul, Vol. 26, No. 6, pp1159-1162, 1991. https://doi.org/10.1109/14.108154
  10. H. Takayasu, “Fractals in the Physical Science”, Manchester University Press, Manchester, 1990.