• Title/Summary/Keyword: FOREHAND

Search Result 25, Processing Time 0.028 seconds

A Comparative Analysis of Kinematics and Kinetics on Forehand Drive in Squash (스쿼시 Forehand 드라이브 동작 시 운동역학적 비교연구)

  • Jin, Young-Wan;Park, Yang-Hee;Park, Jae-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.17-25
    • /
    • 2007
  • The purpose of the study is to give basic data for the improvement of the skill and to show an exemplary position for squash club members or trainers thru a comparative analysis on the kinematics and kinetics variables on the forehand drive motion in playing squash. The objects of the research are divided into two sections, skilled group(n=8) and unskilled group(n=8). The skilled group is composed of professional players currently working and unskilled group is career of six month, both of lives in B city. In this research, to gather the data 3D motion analysis and test result analysis using force platform was used. The variables are duration, position, segment velocity, segment acceleration and etc. in using force platform. The results are as follows: 1. The duration per phase of the skilled is 0.18sec P1(DS) while that of unskilled is 0.32sec. in P2(FT), the duration of the skilled is 0.29sec, that of unskilled is 0.34sec. Average of the duration of the skilled is 0.48sec, while the unskilled, 0.66sec. 2. Regarding positional movements per event, the unskilled has a relatively higher position in center of gravity, shoulder joint, elbow joint compared with that of the skilled. Generally speaking, positions of the unskilled is higher than the skilled. 3. In segment velocity per event, R-shank, R-upper arm, R-forearm and racket. The skilled is faster than the unskilled. we found a big dig difference in shank. 4. In acceleration per event, there was a big difference in upper-arm and fore-arm of the impact. 5. The skilled group on the force platform shows relatively stable and regular changes while the unskilled shows unstable from the touch down to initial 20% the force value of central support period after the impact moment decreases rapidly and the center of gravity is not moved well. 6. The maximum force value of the skilled is 1019.7N. it is found 19.86% of the total duration. That of the unskilled is 639.2N, it is found 20.67% of total duration.

Analysis of Lower Limb Joint Angle and Rotation Angle of Tennis Forehand Stroke by Stance Pattern (스탠스 유형에 따른 테니스 포핸드 스트로크의 하지관절각도와 회전각도 분석)

  • Kang, Young-Teak;Lee, Kyung-Soon;Seo, Kuk-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • The purpose of this study was to analyze the kinematics variables of during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study, who have never been injured for last six months, in Busan. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. It was filmed by 6 video camera and used with 3-dimensional motion analyzer system. The following kinematic variables were analyzed in relation to angle of segment( shoulder, hip and knee joint). The conclusion were as follow: 1. The angle of hip joint represented at impact that horizontal swing was not significant difference by stance patterns but vertical swing was increased in open stance than square and semi-open stance. 2. The angle of both knee was not significant difference between all stance types and swing patterns. 3. The angle of shoulder, hip and knee joint rotation showed that open stance was increased than square and semi-open stance in all swing types and event.

Analysis of Upper Limb Joint Angle of Tennis Forehand Stroke (테니스 포핸드 스트로크의 상지관절각도 분석)

  • Kang, Young-Teak;Seo, Kuk-Woong;Sun, Sheng;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.3
    • /
    • pp.115-124
    • /
    • 2007
  • The purpose of this study was to analyze the kinematics variables of upper limb joint during forehand stroke by swings patterns. Eight high school tennis players were chosen for the study, who have never been injured for last six months, in Busan. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, semi-open and open stance. It was filmed by 6 video camera and used with 3-dimensional motion analyzer system. The following kinematic variables were analyzed in relation to angle of joint(shoulder, elbow and wrist joint). The conclusion were as follow: 1. The angle of right shoulder joint represented all event that both swing were shown similar pattern in swing type and stance pattern. 2. All event in the angle of elbow joint had consistent with that except E2, horizontal and vertical swings in square stance. 3. All event in the angle of wrist joint was show to similar pattern except E2, horizontal and vertical swing in open stance.

Kinematic Analysis on Stroke in Wheelchair Table Tennis of Spinal Cord Injured Athletes and a Comparative Study with Abscission Athletes -Case Study of Medalists of Beijing 2008 Paralympics- (척수장애 휠체어 탁구 스트로크의 운동학적 분석 및 절단장애 선수와의 비교 -2008 베이징 장애인 올림픽 메달리스트 사례연구-)

  • Moon, Gun-Pil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.151-159
    • /
    • 2008
  • In this research, kinematic comparative analysis was performed on strokes of abscission and spinal cord injured athletes who participated in 2008 Beijing Paralympics wheelchair table tennis games. Strokes of all situations were collected under real match-like conditions. Among those, three major forehand stroke motions and backhand stroke motions were drawn Data collected by 9 infrared cameras were expressed in angular motions using graphic program LabVIEW7.0. As a result, forehand stroke of spin handicap athlete from analyzed images, the rotations of the trunk happened with the rotations of shoulder and the flexion extensions of elbow nearly at the same time. According to these results, insufficient turning force or speed of rackets is recompensed using flexion. backhand stroke of spin handicap athlete from analyzed images, the rotations of the trunk, the flexion extensions of the elbow and the flexion extensions of the shoulder were lined up on the prolongations of ping-pong balls. Forehand stroke of abscission athletes was done by outward rotation of the arm using backswing and inner rotation. As for backhand stroke, backswing was made by inner rotation in the spin of shoulder and waist. And after the backswing, impact was formed in wide outer rotation towards the ball.

Angular Kinematic Analysis of Forehand Drive and Smash in Table Tennis (탁구 포핸드 드라이브와 스매시의 각운동학 분석)

  • Son, Won-Il
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2008
  • This study was conducted with 8 male table tennis players who won national competitions. Of the subjects, 4 used a racket of penholder grip and 4 used one of shake hand grip, and all of them were right.handers. We analyzed three-dimensional angular characteristics such as angular component, swing trajectory and swing posture related to the racket swing motions of forehand drive and smash in table tennis, and drew conclusions as follows. Racket angle(p<.05) and racket swing angle(p<.01) were significantly different between the two motions. In smash, the back swing posture maintained the racket angle large by holding the racket upright and made the racket swing angle small for high ball speed. In addition, the height of the racket head in back swing posture was also significantly different between the two motions. In phg on impact, the open angle of the long axis of the racket was significantly different between the two motions. This shows that impact was applied a bit behind for giving top spin to the ball. In the back swing of drive, the gradient of the upper body was slightly larger in shg than in phg probably because of the structural difference of the racket grip in the neutral posture.

Analysis of Ground Reaction Force by Stance Type during Tennis Forehand Stroke (테니스 포핸드 스트로크 스탠스 유형의 지면반력 분석)

  • Kang, Yong-Teak;Seo, Kook-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.449-455
    • /
    • 2009
  • The purpose of this study was to analyze the kinetics variables of GRF by dtance type during forehand stroke. Eight high school tennis players, who have never been injured for last six months, in Busan were chosen for the study. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, semi-open and open stance. It was filmed by 6 video camera and used with 3-dimensional motion analyzer system and GRF system. The following kinetic variables were analyzed in relation to left leg and right leg GRF. The conclusion were as follow: 1. In square and semi-open stances, the horizontal ground reaction force was decreased at impact in left leg regardless of swing type, whereas open stance was increased at impact to the tiptoe in both legs. 2. In square and semi-open stances, the vertical ground reaction force was increased at impact in left leg regardless of swing types, whereas open stance was decreased at impact to vertical direction in both legs.

Analysis of Racket Head Velocity of Tennis Forehand Stroke by Stance Patterns (스탠스 유형에 따른 테니스 포핸드 스트로크의 라켓헤드 속도분석)

  • Seo, Kuk-Woong;Kang, Young-Teak;Lee, Kyung-Soon;Seo, Kook-Eun;Kim, Jung-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.53-60
    • /
    • 2007
  • Recently tennis techniques has been changed in stance patterns. Stance is consist of square stance, open stance and semi-open stance. The purpose of this study was to analyze the kinematics variables of racket head velocity during forehand stroke by stance patterns. Eight high school tennis players were chosen for the study who use semi western grip right-handed person more than career 7 years. They performed horizontal swing and vertical swing that it was done each five consecutive trial in the condition of square, open and semi-open stance. The results showed that racket head velocity significant difference was not observed in stance types between swings at impact. Y and Z components of racket head velocity for horizontal and vertical swing at second prior to impact and at impact were that y components velocity was faster horizontal swing than vertical swing and z components velocity was later horizontal swing than vertical swing. Statistically significant variable to racket head velocity and Pearson's correlation were drawn as follows. 1. Z components of racket head velocity in square stance was significant correlation by right knee joint. 2. Y components of racket head velocity in semiopen stance was significant correlation by left hip joint. 3. Y components of racket head velocity in open stance was significant correlation by left ankle joint.

Analysis of Table Tennis Swing using Action Recognition (동작인식을 이용한 탁구 스윙 분석)

  • Heo, Geon;Ha, Jong-Eun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2015
  • In this paper, we present an algorithm for the analysis of poses while playing table-tennis using action recognition. We use Kinect as the 3D sensor and 3D skeleton data provided by Kinect for further processing. We adopt a spherical coordinate system and feature selected using k-means clustering. We automatically detect the starting and ending frame and discriminate the action of table-tennis into two groups of forehand and backhand swing. Each swing is modeled using HMM(Hidden Markov Model) and we used a dataset composed of 200 sequences from two players. We can discriminate two types of table tennis swing in real-time. Also, it can provide analysis according to similarities found in good poses.

A Study of In-sole Plantar Pressure Distribution in Functional Tennis Shoes (기능성 전문테니스화의 족저압력분포 분석)

  • Lee, J.S.;Kim, Y.J.;Park, S.B.
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.99-118
    • /
    • 2004
  • The aim of this study is to evaluate tennis shoes's plantar pressure distribution in tennis prayers and to determine the influence of the shoe on various tennis movements. When investigating the biomechanics of movement in tennis, one of the first things to do is to understand the movement patterns of the sport, specifically how these patterns relate to different tennis shoes. Once these patterns are understood, footwear company can design tennis shoes that match the individual needs of tennis players. Plantar pressure measurement is widely employed to study foot function, the mechanical pathogenesis for foot disease and as a diagnostic and outcome measurement tool for many performance. Measurements were taken of plantar pressure distribution across the foot and using F-Scan(Tekscan Inc.) systems respectively. The F-Scan system for dynamic in-shoe foot pressure measurements has enabled us to assess quantitatively the efficacy of different types of footwear in reducing foot pressures. The Tekscan F-Scan system consists of a flexible, 0.18mm thick sole-shape having 1260 pressure sensors, the sensor insole was trimmed to fit the subjects' right, left shoes. For this study 4 university male, high level tennis players were instructed to hit alternated forehand stroke, backhand stroke, forehand volley, backhand volley, smash, service movement in 4 different tennis shoes. 1. When impact in tennis movement, peak pressure distribution of landing foot displayed D>C>B>A, A displayed the best low pressure distribution. A style's tennis shoes will suggest prayer with high impact. If prayer with high impact feeling during pray in tennis wear A style, it will decrease injury, will have performance improvement. 2. When impact in tennis movement, plantar pattern of pressure distribution in landing foot displayed B>A>C>D in stability performance. During tennis, prayer want to stability movement suggest B style tennis shoes when tennis movement impact keep stability of human body. B style tennis shoes give performance improvement 3. When impact in tennis movement, plantar pattern of center of force(C.O.F.)trajectory in landing foot analyzed this : 1) When stroke movement and volley movement in tennis, prayer better to rearfoot movement. 2) when service movement, prayer midfoot strike movement. 3) when smash movement, prayer have forefoot strike movement.

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.