• Title/Summary/Keyword: FORCE PLATFORM

Search Result 386, Processing Time 0.03 seconds

Pedagogical Mathematica Platform Visualizing the Coriolis Effects in 3-Cell Atmospheric Circulation Model

  • Kim, Bogyeong;Yun, Hee-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.91-99
    • /
    • 2014
  • The atmospheric flow in the 3-Cell model of global atmosphere circulation is described by the Lagrange's equation of the non-inertial frame where pressure force, frictional force and fictitious force are mixed in complex form. The Coriolis force is an important factor which requires calculation of fictitious force effects on atmospheric flow viewed from the rotating Earth. We make new Mathematica platform to solve Lagrange's equation by numerical analysis in order to analyze dynamics of atmospheric general circulation in the non-inertial frame. It can simulate atmospheric circulation process anywhere on the earth. It is expected that this pedagogical platform can be utilized to help students studying the atmospheric flow understand the mechanisms of atmospheric global circulation.

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin Kim;Eun-hong Min;Sanghwan Heo;WeonCheol Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.390-402
    • /
    • 2022
  • Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Workspace and Force-Moment Transmission of a Parallel Manipulator with Variable Platform (가변형 병렬기구에 대한 작업공간과 힘/모멘트 전달 특성 해석)

  • Kim Byoung-Chang;Lee Se-Han
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.138-144
    • /
    • 2006
  • Kinematic and dynamic characteristics of a Stewart platform based parallel manipulators are fixed once they are constructed. Thus parallel manipulators with various configurations are required to meet a variety of applications. In this research a parallel manipulator with variable platform (PMVP) has been developed, in which the length of the arm linking the platform center to the platform-leg contact point can be varied by an actuator. The workspace of the PMVP is larger than that of a traditional Stewart platform and especially the range in which the maximum orientation angles can be maintained is significantly expanded. Furthermore, the characteristics of force and moment transmission between the legs and platform can be adjusted to meet the requirements of various tasks. Kinematic and dynamics analysis was performed to verify the usefulness of the PMVP and the actual hardware was built to demonstrate the feasibility.

Estimation of Rider's Action Force from Measurement of Motion Platform Control Force in the 6 DOF Bicycle Simulator (6 자유도 자전거 시뮬레이터의 운동 장치 제어력을 이용한 운전자의 작용력 추정)

  • 신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.842-847
    • /
    • 2002
  • One of the challenging problems with bicycle simulators is to deal with the inherent unstable bicycle dynamics that is coupled with rider's motion. For the bicycle dynamics calculation and the real time simulation, it is necessary to identify the control inputs from the rider as well as the virtual environments. The six control forces of the Stewart platform-based motion system are used for estimation of the rider's action force, which is one of the important control inputs, but of which the direct measurement is impractical. For the effective estimation of the rider's action force, the dynamics model of the motion system is derived incorporated with both analytical and experimental methods and the sliding mode controller with perturbation estimation is developed.

  • PDF

Accuracy and Reliability of Ground Reaction Force System and Effect of Force Platform Mounting and Environment (지면반력장비의 정밀성, 신뢰도와 장비설치.사용 환경의 영향)

  • Park, Young-Hoon;Youm, Chang-Hong;Sun, Sheng;Seo, Kook-Woong;Kim, Eui-Hwan;Kim, Tae-Whan
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Ground reaction force (GRF) measures are one of the most commonly used in biomechanical study. GRF system is very useful educational tool to explain and demonstrate the Newton's law of universal gravitation and laws of motion as well. However, accuracy, intra- and inter- force platform measures' consistency, reliability, noise, and the effect of platform mounting to GRF measures were not clearly viewed. The aim of this study was to examine the above. GRFs of a plastic dummy and two subjects' quiet upright standing were collected at four university laboratories eight force platforms. The types of platforms, analysis programs, and platform set-up were various. Three 100s-trials were conducted with sampling frequency of 100 Hz. First two trials' vertical component of GRFs, Fz, and CoP sway ranges of mid-60s-portion of 100s trials were analyzed by the paired t-tests and one-way ANOVA. Six of eight platforms' 1st and 2nd trial dummy Fz were statistically different (p<.05) and all platforms ICC were poor (<.28). Fz of the two platforms in every four laboratories were statistically different (p<.05). There were white noises and/or very distinctive noises at specific frequency ranges in all Fz measures. 5 Hz low-pass filtering made clear the Fz differences. CoP ranges of dummy were less than 0.5 cm and the best was 0.02 cm. This CoP range finding agrees with previous results suggests the importance of force platform mounting and A/D card resolution.

Design of the Parallel Manipulator for Minimizing the Extreme Articular Force in the Specific Translation Trajectory (특정 병진작업경로에서 최소의 관절힘을 받는 병렬형 매니퓰레이터의 설계)

  • 양현익;이종우;허원혁
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.3
    • /
    • pp.68-75
    • /
    • 2004
  • Recently, need of the parallel manipulator requiring superior precision is increasing for medical application and precision manufacturing. In this study, we convert a given complex translation trajectory of the moving platform into a set of segments and hence a complex motion of the moving platform can be tractable and easily controled in a very limited workspace. In addition force exerted. to each link is minimized so that the minimized force can be transmitted to the end effector of the moving platform. An user friendly program is developed to design Gough-type 6DOF parallel manupulator based on the proposed method.

Development of a Stewart Platform-based 6-axis Force Sensor for Robot Fingers

  • Luo, Minghua;Shimizu, Etsuro;Feifei, Zhang;Ito, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1814-1819
    • /
    • 2005
  • This paper describes the development of a Stewart platform-based robot force sensor with distinctive structure of ball joints. The number of ball joints is only a half of the similar style sensors, so it is possible to reduce size and weight of the sensor. The structure of ball joint is described and discussed. Furthermore, we use strain gauges, but not liner voltage differential transformers, as sensing elements, in order to reduce size and weight of the sensor. It is also proposed that beams are replaced with pipes as sensing elements of the sensor. The ball joints and sensing elements with pipes can effectively reduce the error of the sensor. A geometric analysis model is also proposed. The external force and its moment can be measured with this model. Moreover, the performance of this sensor was tested. The test results conducted to evaluate the sensing capability of the sensor is reported and discussed.

  • PDF

Force/Moment Transmissionability Analysis of a Parallel Manipulator (병렬형 매니퓰레이터의 힘/모우멘트 전달특성에 관한 연구)

  • Ahn, Byoung-Joon;Hong, Keum-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.109-121
    • /
    • 1996
  • This paper presents how the input forces along the prismatic joints of a parallel manipulator are transmitted to the upper platform. In order to consider force transmission and moment transmission seperately the Jacobian matrix for parallel manipulators is splitted into two parts. Magnitudes of input forces on the six actuators at a given manipulator configuration which generate maximum/minimum output force with no moment generated on the platform are obtained through the singular value decomposition of a matrix involving the Jacobian. Similarly the directions of the input forces to obtain only the rotation of the platform have been analyzed. Using the singular values a simple equation for the volume of ellipsoid which is a good tool for manipulability measure is provided. Obtained results could be useful in determinimg design parameters like radius of plaform, angles between joints, etc. Simulations are porvided.

  • PDF

Biomechanical Analysis of Body Balance

  • Jeong, Byung-Yong
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.233-238
    • /
    • 1988
  • Human body sways continuously to maintain balance during upright stance. A computer-aided instrumentation system using a force platform has been developed to investigate the body balance. The Kistler force platform and amplifiers were only used to obtain the precise measurements, and the data acquisition and analysis software operating on an IBM PC with A/D converter was developed. This study presents methods for the display of platform center of pressure data on stability study. This system can be used as a tool in evaluating the man's ability to balance and disorders of the nervous system.

  • PDF