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The atmospheric flow in the 3-Cell model of global atmosphere circulation is described by the Lagrange's equation of the 
non-inertial frame where pressure force, frictional force and fictitious force are mixed in complex form. The Coriolis force is 
an important factor which requires calculation of fictitious force effects on atmospheric flow viewed from the rotating Earth. 
We make new Mathematica platform to solve Lagrange's equation by numerical analysis in order to analyze dynamics of 
atmospheric general circulation in the non-inertial frame. It can simulate atmospheric circulation process anywhere on the 
earth. It is expected that this pedagogical platform can be utilized to help students studying the atmospheric flow understand 
the mechanisms of atmospheric global circulation.
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1. INTRODUCTION

Motion observed on the rotating Earth is generally 

explained by invoking inertial forces described in the non-

inertial frame of reference (Symon 1971, Landau & Lifshitz 

1976). Because viewing the motion from accelerating or 

rotating frame of reference introduces fictitious forces 

added to actual forces. On account of the inequality in 

energy absorbed at a spherical surface of the rotating 

Earth, seven zones of atmospheric pressure are formed 

over the Earth surface: an intertropical convergence zone 

(ITCZ) near the equator, two subtropical highs in both 

Hemispheres at the latitude of 30°, two subpolar lows on 

both Hemispheres at the latitude of 60°, two polar highs 

on both poles. Accordingly, global scale circulation of 

the atmosphere is described by the Lagrange's equation 

in the non-inertial frame of reference according to the 

3-Cell general circulation of the atmosphere (GCA) model 

rather than Hadley Cell model (Ahrens 2001). Long-term 

recording data from the satellites approve of the 3-Cell 

GCA model (“AMNH-Weather and Climate Events” 2014, 

“Global Climate Animation” 2014). On the rotating Earth 

frame, the Coriolis force acts as a most important force 

to change the direction of surface airflows on the Earth. 

The deflection is not only instrumental in large-scale 

atmospheric circulations, the development of tropical 

cyclones, hurricanes and typhoons, also it can affect missile 

launching, satellite operation, and GPS position sensors 

(Bikonis & Demkovicz 2013) in the modern sciences. Effects 

upon the weather, ocean currents, rivers and projectile 

motions are well documented (Graney 2011, Mclntyre 

2000), but the motions over very long distance are required 

for discernible effects. Common pedagogical tools are 

helpful to explain the Coriolis effects. For example, Merry-

Go-Round table (“Merry-Go-Round” 2014) or Bath-Tub 

Vortex (Trefethen et al. 1965) is helpful for explaining the 

Coriolis effects, but it cannot be distinguished whether its 

effect is from Coriolis force or centrifugal force unless we 

calculate the forces with their vector components. While 

this approach simplifies some problems, there is often 

little physical insight into the motion, in particular, into the 

fictitious force of the vectorial characteristic.
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Recently, efficient visualization programs are utilized for 

the Coriolis force effects (Zimmerman & Olness 1995, Tam 

1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 

helpful for the convenient function of symbolic calculations 

and graphic manipulations. The Mathematica simulation 

of the atmospheric circulation matching the 3-Cell GCA 

model has been presented in our previous work (Yun 

2006), however, the 3-Cell GCA model was shown with the 

illustration rather than with active platform. In this paper, 

we present anew Mathematica platform presenting the GCA 

simulation according to the 3-Cell GCA model in 2D or 

3D graphics. In the platform, we can simulate the Coriolis 

effects at any point of the globe automatically and confirm 

the atmospheric circulation dynamics interactively.

2. LAGRANGE’S EQUATION IN A NON-INERTIAL 
FRAME OF REFERENCE

In the inertial frame, space should be homogeneous and 

time is isotropic to assert the invariance of the mechanical 

system. If we were to choose an arbitrary frame of reference, 

space would be inhomogeneous and anisotropic. Therefore, 

the equation of motion in the rotating Earth system should 

be described in the non-inertial frame of reference (Landau 

& Lifshitz 1976). For the validity of the principle of least 

action in the mechanical system independent of the frame 

of reference chosen, we must carry out the necessary 

transformation of the Lagrangian L
0
 for the Lagrange's 

equation in the non-inertial frame of reference. This 

transformation is done in two steps. Firstly, we consider 

a frame of reference 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

 which moves with a translational 

velocity 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
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helpful for the convenient function of symbolic calculations and graphic manipulations. The 
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presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

(t) relative to the inertial frame 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

. Next, we bring 

a new frame of 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

 which rotates relative to 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 
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If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 
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Finally, the Lagrangian in K frame is 
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If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

. As a result, 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
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In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 
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 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 
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If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
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In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 
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⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 
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where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 
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If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 
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where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
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In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 
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where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 
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If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 
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Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
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K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

     
(2)

where, 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

= 

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

. Then Lagrange's equation, which satisfy the 

Fig. 1. Actual and fictitious forces on the rotating Earth's surface at the latitude of λ = π/2-θ in a topocentric frame of XYZ axis system. The angular velocity of the 
Earth is ω0 and θ is the polar angle in the geocentric reference frame.
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principle of least action,

   

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
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chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 
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L0 = 
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where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
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In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 
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simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
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consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

. Then 

Eq. (3) is

         

simplifies some problems, there is often little physical insight into the motion, in particular, into the 
fictitious force of the vectorial characteristic. 
 Recently, efficient visualization programs are utilized for the Coriolis force effects 
(Zimmerman & Olness 1995, Tam 1997, Yun 2005, Zeleny 2010). In particular, Mathematica is 
helpful for the convenient function of symbolic calculations and graphic manipulations. The 
Mathematica simulation of the atmospheric circulation matching the 3-Cell GCA model has been 
presented in our previous work (Yun 2006), however, the 3-Cell GCA model was shown with the 
illustration rather than with active platform. In this paper, we present anew Mathematica platform 
presenting the GCA simulation according to the 3-Cell GCA model in 2D or 3D graphics. In the 
platform, we can simulate the Coriolis effects at any point of the globe automatically and confirm the 
atmospheric circulation dynamics interactively. 
 
2. LAGRANGE’S EQUATION IN A NON-INERTIAL FRAME OF REFERENCE 
 

In the inertial frame, space should be homogeneous and time is isotropic to assert the 
invariance of the mechanical system. If we were to choose an arbitrary frame of reference, space 
would be inhomogeneous and anisotropic. Therefore, the equation of motion in the rotating Earth 
system should be described in the non-inertial frame of reference (Landau & Lifshitz 1976). For the 
validity of the principle of least action in the mechanical system independent of the frame of reference 
chosen, we must carry out the necessary transformation of the Lagrangian L0 for the Lagrange's 
equation in the non-inertial frame of reference. This transformation is done in two steps. Firstly, we 
consider a frame of reference K' which moves with a translational velocity V⃗ (t) relative to the inertial 
frame K0. Next, we bring a new frame of K which rotates relative to K' with angular velocity, ω⃗ . As a 
result, K executes both translational and rotational transformation to the inertial frame K0 (fix star): 

 

K0 
⃗ ()⎯ K → K → 	K. The Lagrangian in K0 frame is (Landau & Lifshitz 1976) 

 
L0 = 

 	m	v − 	U                                                        (1) 
 
where, v0 is the velocity of a particle in K0 frame and U is a potential. The velocities v⃗ 0= v⃗ ' + V⃗ (t) 

come from a transformation K0 
⃗ ()⎯ K and the v′⃗  = v⃗  + ω⃗  come from a transformation K0 

⃗ ()⎯ K.  
Finally, the Lagrangian in K frame is 
 
L= 

 	m	 + 	m	v⃗ ∙ ω⃗ 	× r⃗ + 
 	m	 ω⃗ 	× 	r′⃗  − m	W⃗ ∙ r⃗ − 	U                       (2) 

 

where, ⃗
 = W⃗ . Then Lagrange's equation, which satisfy the principle of least action, 

∂
∂t

∂L
∂v⃗ 	= 	 ∂L∂r 	 ∶ 

 
m⃗

 = −∇⃗ U − mW⃗ + 	m	r	⃗ 	× ω̇⃗ + 	2m	v⃗ 	×	ω	⃗ + 	m	ω	⃗ 	× (r⃗ 	× ω	⃗ )                (3) 
 
If we suppose that angular velocity is constant and neglect the translational velocity, we omit 
	m	r	⃗ 	× ω̇⃗ 		and	m W⃗ . Then Eq.(3) is 
 

m⃗
 = −∇⃗ U + 2	m		v⃗ 	×	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ )                                 (4)     

 
We rewrite this again as 
 

             (4)

We rewrite this again as

         m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 
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It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

 includes 

the friction and the pressure gradient force, and the 

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

 

includes the Coriolis force 2m

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

 × 

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

 and the centrifugal 

force m(

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

) × (

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

×

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

) which deflect the atmospheric flows 

on the rotating Earth. As shown in Fig.1, the Coriolis 

acceleration vector 

m

⃗ = 	 f⃗effective                                                                                  (5) 

 

m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
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wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
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In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
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 = 0 at the equator such as that shown in Fig. 1. It 

was not until comprehension of the vectorial nature of the 

effective force in the non-inertial frame of reference that 

we could analyze the deflection effects of the atmospheric 

circulations effectively; we present some parts of the 

Mathematica coding to show the vector calculations and the 

results with their vector components.  

Mathematica  code #1

In[1] = Clear[Global`*"]; 

In[2] = IF[θ> 1/2π, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; }

 {ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)}

 {ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere)

In[3] = fInertial = {0, 0, - mg} ; 

In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]]; 

In[5] = fCentrifugal = 

 m Cross[ω[t], Cross[r[t], ω[t]]]

 //Simplify] 

In[51] =  v0[θ_]:= Which[θ==0, 10, 

 1/8 π <= θ < π/6,  10,

 1/6 π <= θ < π/3,  -10,

 1/3 π <= θ < π/2,  10,

 1/2 π <= θ < π 2/3,  -10,

 2/3 π <= θ < π 5/6,  10,

 5/6 π <= θ < π 17/18,  -10, 

 θ == π, -10 ]; 

In[6] = eq1 = -r''[t] - fInertial - fCoriolis - fCentrifugal

Fig. 2. The table of the deflections at eight points on the globe. The points 
are selected in the different atmospheric zone of the 3-Cell GCA model.

�

x,S

y,E

�Θ,
Π

8
�

,

x,S

y,E

�Θ,
Π

4
�

,

x,S

y,E

�Θ,
3 Π

8
�

,

x,S

y,E

�Θ,
Π

2
�

,

x,S

y,E

�Θ,
5 Π

8
�

,

x,S

y,E

�Θ,
3 Π

4
�

,

x,S

y,E

�Θ,
7 Π

8
�

,
x,S

y,E
�Θ, Π�

�

윤희중.indd   93 2014-03-10   오후 2:42:22



94http://dx.doi.org/10.5140/JASS.2014.31.1.91

J. Astron. Space Sci. 31(1), 91-98 (2014)

In[7] = initialRule = Thread/@ {r[0] -> 0,

 r'[0] -> {1, 0, 0}}//Flatten;

 nOrder = 0; 

In[8] = eq2 = (Series[eq1/m, {t, 0, nOrder}] == 0) 

 /.initialRule//Normal//Thread

 //Simplify 

In[9] = vars = Table[D[{x[t],y[t],z[t],{t,i}]

 ,{i,2,nOrder+2}]/.t -> 0 //Flatten 

In[10] = sol = Solve[eq2,vars]//First 

In[11] = point[t_,θ_] = Series[r[t],{t,0,nOrder+2}]

   /.sol/.initialRule/.v0[θ] -> v0x//Normal] 

Out[11] = {t v0x,-t^2 v0xω0 Cos[θ],-1/2gt^2}

Mathematica  code #2

In[22] = plot[θ_]:=

   ParametricPlot[point[t, θ][[{1,2}]]/.{ω0->1,

   g -> 9.8}//Evaluate, {t, 0, 510}  

   ,PlotStyle -> {Thickness[0.0336], Hue[0.01]}

   ,AxesLabel -> {"x, S", "Y, E " }  

   ,PlotRange -> {{-50, 50}, {30, -30}, {0, -50}} 

   ,PlotLabel -> {"theta", θ} 

   ,Ticks -> False, ImageSize->85,     

   ,DisplayFunction -> Identity];       

   Table[plot[θ], { θ, (1/8)π, (8/8)π, (1/8)π }] 

Out[22] =

Mathematica  code #3

In[31] = gomega = {-ω0Sin[θ], 0, ω0Cos[θ]};  

  rveector = {0, 0, rho};  }

  velocity = {v0[θ], 0, 0};  }

  gravity = 0, 0, -9.8};  }

  corioacc [θ_]= 

  2 Coross [velocity, gomega]//Thread}

  centriacc [θ_]=}

  Cross[gomega, Cross[rvector, gomega]]

  //Thread}

  effectacc[θ_]=

  {corioacc[θ] + centriacc[θ] + gravity}//Thread

Out[31] = {0, -2ω0 Cos[θ]v0[θ], 0} 

Out[32] = {rhoω0^2Cos[θ]Sin[θ], 0, rhoω0^2Sin[θ]^2} 

Out[33] = {rho ω0^2 Cos[θ]Sin[θ], 

   -2ω0Cos[θ]v0[θ], -9.8+rhoω0^2Sin[θ]^2} 

However, Fig. 2 does not show which fictitious forces cause 

the deflections unless we calculate those with their vector 

components respectively. Because the deflections of the 

winds over the globe come from the resultant effective 

force 
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m

⃗ = f⃗ actual	+	f⃗fictitious                                               (6)  

 
This is just a Newton's equation, which shows the motion of an object by the force f⃗effective. Here 

f⃗actual includes the friction and the pressure gradient force, and the f⃗fictitious includes the Coriolis force 
2	m	v⃗ 	× 	ω	⃗  and the centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) which deflect the atmospheric flows on the 
rotating Earth. As shown in Fig.1, the Coriolis acceleration vector v⃗ 	× 	ω	⃗  direct to ±Y direction. 
Deriving process of the Lagrange's equation in the non-inertial frame is well described in other books 
(Symon 1971, Landau & Lifshitz 1976). 
 
 
3. MATHEMATICA PROGRAMING FOR GERNERAL CIRCULATION OF THE 
ATMOSPHERE 
 
3.1 Vector calculation of the effective force 
 

To analyze the deflection effect of the atmospheric flow based on the 3-Cell GCA model at any 
point on the Earth's surface, we create a position function point[t, θ] in solving the Eq.(4) in 
Mathematica (Zimmerman & Olness 1995, Tam 1997). If a latitude (	= π /2 -θ) is given, the wind 
vector function v0⃗ [θ] is determined by the position function point[t, θ]. We assume that the initial 
wind blows along the meridian and its velocity is determined according to the 3-Cell GCA model. 
Mathematica coding for solving Eq. (4) is shown in In[1] - In[10] and its Mathematica solution is 
Out[11]: point[t, θ] = {t v0x, -t^2ω0x Cos[θ], -1/2 gt^2} while n Order = 0 for simplicity. Once 
point[t, θ] is given, the Parametric Plot draw the path of the wind with a time domain vector array of 
the point[t, θ] in Mathematica such as that shown in Fig.2. The Out[22] (Fig. 2) is a list of plot in 
deflection on the eight points on the globe selected respectively at the different atmospheric zone of 
the 3-Cell GCA model. As shown in Fig. 2, the winds deflect right in the Northern Hemisphere and 
deflect left in the Southern Hemisphere regardless of the wind direction. No deflection occurs at the 
equator (θ =	π	/2) because the Coriolis force m	v⃗ 	× ω⃗ 	= 0 at the equator such as that shown in Fig. 1. 
It was not until comprehension of the vectorial nature of the effective force in the non-inertial frame of 
reference that we could analyze the deflection effects of the atmospheric circulations effectively; we 
present some parts of the Mathematica coding to show the vector calculations and the results with 
their vector components.   

 
 
 
 
In[1] = Clear[Global`*"];  
In[2] = IF[> 1/2, ω[t_] := ω_S[t], ω[t_] :=ω_N[t]]; } 

{ω_N[t_] :={-ω0 Sin[θ], 0, ω0 Cos[θ]}; (N-Hemisphere)} 
{ω_S[t_] :={-ω0 Sin[θ], 0, -ω0 Cos[θ]}; (S-Hemisphere) 

In[3] = fInertial = {0, 0, - mg} ;  
In[4] = fCoriolis = 2 m Cross[r'[t], ω[t]];  
In[5] = fCentrifugal =  

m Cross[ω[t], Cross[r[t], ω[t]]] 
//Simplify]  

In[51] =  v0[θ_]:= Which[θ==0, 10,  
1/8 π <= θ < π/6,  10, 
1/6 π <= θ < π/3,  -10, 
1/3 π <= θ < π/2,  10, 
1/2 π <= θ < π 2/3,  -10, 
2/3 π <= θ < π 5/6,  10, 

Mathematica code #1 

 in Eq. (5), we must calculate accurately the 

ingredients of the effective force for the probable cause of 

deflections. For the examination of the deflection effects 

of the effective force, we calculate the constituent parts of 

the effective force accelerations with its vector components 

at the eight cities respectively, and summarize those in 

Table 1. The vector calculation of the fictitious forces with 

those components is easy in Mathematica as shown coding 

In[31]. The vector command of the vector product or triple 

vector product is coding as cross[a, b] or cross[a, cross[b, 

c]] in Mathematica as if we write down the formula in text. 

Resultant accelerations occur in X, Y, Z directions, however, 

only the Coriolis force acceleration occur in ±Y direction 

(In[31], Out[31]) which acts as a deflections force of the wind 

flowing ±X direction. The effective force accelerations in ±X, 

Z directions reduce or enhance of wind speed and gravity 

(In[31], Out[31-33]), those are not forces deflecting the 

wind direction for the wind speed in ±X, gravity in Z. These 

calculations confirm that the Coriolis force is the unique 

deflection force in the atmospheric circulation dynamics 

Table 1. The accelerations of the effective force calculated with those vector components at the eight cities. The 
calculation parameters: ω0 = 7.292 × 10-5 sec-1, g=9.8 m/sec2, and the unit of the acceleration is m/sec2. Minus sign of the 
v0x stands for the wind direction to the north unit of m/sec.

Coriolis
force (×10-4)

Centrifugal
Force (×10-2)

Gravity
Effective force

(×10-3)

City (latitude)
Murmansk (68°58'N)
New York (40°42'N)
Honolulu (21°18'N)
Equator (0°0'N)
Lima (12°03'S)
Santiago (33°27'S)
Queen Mary (66°45'S)
Daejeon (36°19'S)

v0x
10
-10
10

±10
-10
10
-10
-10

X
0
0
0
0
0
0
0
0

Ya

-13.612
9.5151
-7.1424

0
-3.0445
8.0314
-13.399
8.6379

Z
0
0
0
0
0
0
0
0

Xb

1.1346
1.6744
1.4485

0
-0.6259
-1.5594
-1.2304
1.6189

Y
0
0
0
0
0
0
0
0

Z
0.4370
1.9483
2.5788
3.3924
3.2446
2.3636
0.5286
2.2023

X
0
0
0
0
0
0
0
0

Y
0
0
0
0
0
0
0
0

Z
-9.8
-9.8
-9.8
-9.8
-9.8
-9.8
-9.8
-9.8

X
11.346
16.774
14.485

0
-6.9259
-15.594
-12.304
16.189

Y
-1.3612
0.9515
-0.7142

0
-0.3044
0.8031
-1.3399
0.8637

Zc

-9.7956
-9.7802
-9.7742
-9.7661
-9.7675
-9.7764
-9.7947
-9.7779

adeflection to East (+) or West (+), bSouth (+) or North (-), cno factor
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even though its relative intensity is so weak; Coriolis force: 

centrifugal force: gravity = 10-4 : 10-2 : 1 as shown in Table 1. 

Cyclone is an area of low pressure around which the winds 

blow parallel to the pressure gradient force balanced to the 

Coriolis force. A hurricane is a severe tropical cyclone which 

occurs over the northern Atlantic and eastern North Pacific 

oceans, and it is called the typhoon in the western North 

Pacific. This same type of cyclone has a different name in a 

different region of the world, however, all the climate events 

occur by the Coriolis force effect (Ahrens 2001, AMNH-

Weather and Climate Events 2014).

3.2 Mathematica platform for the 3-cell atmospheric 

general circulation model

Understanding the vectorial nature of the effective forces 

on the Earth's surface is a keyword of the atmosphere 

circulation dynamics. However, it is not easy to evaluate the 

Fig. 3. Snapshots of the Mathematica platform of the general atmospheric circulation to the 3-Cell model. (a) is the 2D Graphics presentation and (b) is that of 3D 
Graphics. Simulations begins on click ► in the popup when you click the  right of t panel. Anytime you may change the Graphics dimension and Graphics menu 
by selecting the panel menu. In addition, you may change the Graphics mode even if the simulation is in pause, then the platform shows the modified simulation.
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(b) 3D Graphics snapshot

Fig. 3. Snapshots of the Mathematica platform of the general atmospheric circulation to the 3-Cell model. (a) is the 2D Graphics presentation
and (b) is that of 3D Graphics. Simulations are running on click � in the popup when you click the ⊕ right of t panel. Anytime you may change
the Graphics dimension and Graphics menu by selecting the panel menu. And you may change the Graphics mode even if the simulation is
pause, then the platform will shows the changed simulation.
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Fig. 4. The wind deflections at the six points of the globe in both 2D Graphics (a) and 3D Graphics (b). The six points are selected for the GCA 3-Cell model from 
the North pole: θ = 1/8 π: North-Polar Easterlies, 2/8 π: South-West Westerlies, 3/8 π: North-East Trade Winds, 5/8 π: South-East Trade Winds, 6/8 π: North-West 
Westerlies, 7/8 π: South-Polar Easterlies in both columns.
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wind deflection effects at any point on the Earth's surface, 

because the deflection is varying on the resultant wind 

vector and associated effective force vectors at the point 

belong to the atmospheric pressure zone matching to 3-Cell 

GCA model. The fundamental concept of the inertial force 

effects in the non-inertial frame of reference is essential 

to analyze the GCA dynamics. Visual representation of 

such vectorial nature of the GCA will be in valuable to the 

researchers working in this field and help teach physics or 

meteorology students.

We provide Coriolis effects platform to simulate the 

wind progressing on the rotating Earth's surface matching 

the 3-Cell GCA model using the function Manipulate 

in Mathematica. Fig. 3a is a 2D Graphics snapshot of 

the platform and Fig. 3b is a 3D Graphics snapshot of 

the platform. The platform draws the path of the wind 

through the point[t, θ] with a time domain of vector array 

of the solution of Eq. (4) using the Parametric Plot of 

Mathematica. On starting the program, platform will show 

Fig. 3a. Simulation performs the built-in program when 

you click the ► appearing while you spread the  of t panel 

of the platform. While the program is executing, you can 

change the parameters of Wind Speed, Earth's Rotation, 

and Theta, then the change will be effective immediately 

Fig. 5. Wind deflections at the equator in 2D (left column) graphics and 3D graphics (right column) for the different wind velocities.
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by the platform. When you stop the simulation, then the 

platform present the trace so far, and you can change the 

parameters of the platform to see another simulation. We 

look at the different deflection in a simulation if we only 

click the different point in the status of pausing platform. 

Fig. 4 shows the deflections at six points both 2D and 3D 

Graphics at once by clicking the points on the platform 

panel. It shows promptly winds of the GCA 3-Cell model on 

the one platform: two polar easterlies, two westerlies, and 

two trade winds. The performance mode of the platform 

will change to the 2D Graphics or 3D Graphics anytime you 

want. Manipulation of both modes enables you to analyze 

not only 2-dimensional deflections but also 3-dimensional 

deflections. For example, at the equator we can analyze the 

X, Z deflection as the wind velocity is varying along the ±X 

direction and confirm the deflection effects such that as 

shown in Fig. 5. Because the program simulate the position 

function point[t, θ] of solution of the vector differential 

equation with effective force, the simulation performs the 

physics behavior of three vectors – wind velocity (

its vector components at the eight cities respectively, and summarize those in Table 1. The vector 
calculation of the fictitious forces with those components is easy in Mathematica as shown coding 
In[31]. The vector command of the vector product or triple vector product is coding as cross[a, b] or 
cross[a, cross[b, c]] in Mathematica as if we write down the formula in text. Resultant accelerations 
occur in X, Y, Z directions, however, only the Coriolis force acceleration occur in ±Y direction (In[31], 
Out[31]) which acts as a deflections force of the wind flowing ±X direction. The effective force 
accelerations in ±X, Z directions reduce or enhance of wind speed and gravity (In[31], Out[31-33]), 
those are not forces deflecting the wind direction for the wind speed in ±X, gravity in Z. These 
calculations confirm that the Coriolis force is the unique deflection force in the atmospheric 
circulation dynamics even though its relative intensity is so weak; Coriolis force: centrifugal force: 
gravity = 10-4 : 10-2 : 1 as shown in Table 1. Cyclone is an area of low pressure around which the winds 
blow parallel to the pressure gradient force balanced to the Coriolis force. A hurricane is a severe 
tropical cyclone which occurs over the northern Atlantic and eastern North Pacific oceans, and it is 
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angular velocity. The frame of reference on the rotating Earth is a non-inertial frame of reference since 
the frame is in acceleration continuously. Therefore, the equation of motion should be modified 
through the coordinate’s transformations by the least action principle in the mechanical system of Eq. 
(4): m⃗

 = −∇⃗ U + 2	m		v⃗ 	× 	ω	⃗ + 	mω	⃗ 	× (r⃗ 	× ω	⃗ ) . Here the Coriolis force 2	m		v⃗ 	× 	ω	⃗  and 
centrifugal force mω	⃗ 	× (r⃗ 	× ω	⃗ ) are the most important fictitious forces which play a significant 
role in a variety of natural processes, most prominently the atmospheric circulation dynamics. In 
particular, the Coriolis force is also responsible for the circular motion of the tropical cyclone, the 
tropical typhoon and the hurricane. Physical comprehension and manifesting ability for the non-
inertial frame of reference on the rotating Earth becomes a merit of asset to physicist and natural 
scientist. The conception of the inertial forces on the Earth has been recognized recently because the 
Coriolis force is not only the most important effective force in the GCA dynamics but also an 
indispensable task for the scientist in long-range missile launching, satellite operation and GPS 
position sensors in modern technology. We demonstrate the Coriolis effects platform to simulate the 
wind progressing on the rotating Earth's surface matching the 3-Cell GCA model in Mathematica. The 
platform draws the realistic path of the wind, through point[t, θ] with the time domain of the vector 
array of the solution of Eq. (4) using the Parametric Plot in Mathematica. We expect this platform 
will be a helpful tool for the physicist and the scientist to analyze the atmospheric general circulation 
dynamics. 
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its vector components at the eight cities respectively, and summarize those in Table 1. The vector 
calculation of the fictitious forces with those components is easy in Mathematica as shown coding 
In[31]. The vector command of the vector product or triple vector product is coding as cross[a, b] or 
cross[a, cross[b, c]] in Mathematica as if we write down the formula in text. Resultant accelerations 
occur in X, Y, Z directions, however, only the Coriolis force acceleration occur in ±Y direction (In[31], 
Out[31]) which acts as a deflections force of the wind flowing ±X direction. The effective force 
accelerations in ±X, Z directions reduce or enhance of wind speed and gravity (In[31], Out[31-33]), 
those are not forces deflecting the wind direction for the wind speed in ±X, gravity in Z. These 
calculations confirm that the Coriolis force is the unique deflection force in the atmospheric 
circulation dynamics even though its relative intensity is so weak; Coriolis force: centrifugal force: 
gravity = 10-4 : 10-2 : 1 as shown in Table 1. Cyclone is an area of low pressure around which the winds 
blow parallel to the pressure gradient force balanced to the Coriolis force. A hurricane is a severe 
tropical cyclone which occurs over the northern Atlantic and eastern North Pacific oceans, and it is 
called the typhoon in the western North Pacific. This same type of cyclone has a different name in a 
different region of the world, however, all the climate events occur by the Coriolis force effect 
(Ahrens 2001, AMNH-Weather and Climate Events 2014). 
 
3.2 Mathematica platform for the 3-cell atmospheric general circulation model 
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atmosphere circulation dynamics. However, it is not easy to evaluate the wind deflection effects at any 
point on the Earth's surface, because the deflection is varying on the resultant wind vector and 
associated effective force vectors at the point belong to the atmospheric pressure zone matching to 3-
Cell GCA model. The fundamental concept of the inertial force effects in the non-inertial frame of 
reference is essential to analyze the GCA dynamics. Visual representation of such vectorial nature of 
the GCA will be in valuable to the researchers working in this field and help teach physics or 
meteorology students. 

We provide Coriolis effects platform to simulate the wind progressing on the rotating Earth's 
surface matching the 3-Cell GCA model using the function Manipulate in Mathematica. Fig. 3a is a 
2D Graphics snapshot of the platform and Fig. 3b is a 3D Graphics snapshot of the platform. The 
platform draws the path of the wind through the point[t, θ] with a time domain of vector array of the 
solution of Eq. (4) using the Parametric Plot of Mathematica. On starting the program, platform will 
show Fig. 4a Simulation performs the built-in program when you click the ► appearing while you 
spread the ⊕ of t panel of the platform. While the program is executing, you can change the 
parameters of Wind Speed, Earth's Rotation, and Theta, then the change will be effective immediately 
by the platform. When you stop the simulation, then the platform present the trace so far, and you can 
change the parameters of the platform to see another simulation. We look at the different deflection in 
a simulation if we only click the different point in the status of pausing platform. Fig. 3 shows the 
deflections at six points both 2D and 3D Graphics at once by clicking the points on the platform panel. 
It shows promptly winds of the GCA 3-Cell model on the one platform: two polar easterlies, two 
westerlies, and two trade winds. The performance mode of the platform will change to the 2D 
Graphics or 3D Graphics anytime you want. Manipulation of both modes enables you to analyze not 
only 2-dimensional deflections but also 3-dimensional deflections. For example, at the equator we can 
analyze the X, Z deflection as the wind velocity is varying along the ±X direction and confirm the 
deflection effects such that as shown in Fig. 5. Because the program simulate the position function 
point[t, θ] of solution of the vector differential equation with effective force, the simulation performs 
the physics behavior of three vectors – wind velocity (v⃗ ), angular velocity of the Earth (ω⃗ 0), and 
position vector (r⃗) – and their associated effects accurately. Hence, the program differs from the 
animation that animate the assign functions with the Animate function from the convenient graphic 
tool (Zeleny 2010). In Mathematica, we can save the snapshots of the simulations and print it. This 
program also executes well on later version of 8.0 Mathematica. 
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position vector (r⃗) – and their associated effects accurately. Hence, the program differs from the 
animation that animate the assign functions with the Animate function from the convenient graphic 
tool (Zeleny 2010). In Mathematica, we can save the snapshots of the simulations and print it. This 
program also executes well on later version of 8.0 Mathematica. 
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analyze the X, Z deflection as the wind velocity is varying along the ±X direction and confirm the 
deflection effects such that as shown in Fig. 5. Because the program simulate the position function 
point[t, θ] of solution of the vector differential equation with effective force, the simulation performs 
the physics behavior of three vectors – wind velocity (v⃗ ), angular velocity of the Earth (ω⃗ 0), and 
position vector (r⃗) – and their associated effects accurately. Hence, the program differs from the 
animation that animate the assign functions with the Animate function from the convenient graphic 
tool (Zeleny 2010). In Mathematica, we can save the snapshots of the simulations and print it. This 
program also executes well on later version of 8.0 Mathematica. 
 
4. CONCLUSION 

) are the 

most important fictitious forces which play a significant 

role in a variety of natural processes, most prominently 

the atmospheric circulation dynamics. In particular, the 

Coriolis force is also responsible for the circular motion 

of the tropical cyclone, the tropical typhoon and the 

hurricane. Physical comprehension and manifesting ability 

for the non-inertial frame of reference on the rotating Earth 

becomes a merit of asset to physicist and natural scientist. 

The conception of the inertial forces on the Earth has been 

recognized recently because the Coriolis force is not only 

the most important effective force in the GCA dynamics but 

also an indispensable task for the scientist in long-range 

missile launching, satellite operation and GPS position 

sensors in modern technology. We demonstrate the Coriolis 

effects platform to simulate the wind progressing on the 

rotating Earth's surface matching the 3-Cell GCA model in 

Mathematica. The platform draws the realistic path of the 

wind, through point[t, θ] with the time domain of the vector 

array of the solution of Eq. (4) using the Parametric Plot in 

Mathematica. We expect this platform will be a helpful tool 

for the physicist and the scientist to analyze the atmospheric 

general circulation dynamics.
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