Browse > Article
http://dx.doi.org/10.26748/KSOE.2022.030

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces  

Hongbhin Kim (Department of Naval Architecture and Ocean Engineering, Inha University)
Eun-hong Min (Department of Naval Architecture and Ocean Engineering, Inha University)
Sanghwan Heo (Department of Naval Architecture and Ocean Engineering, Inha University)
WeonCheol Koo (Department of Naval Architecture and Ocean Engineering, Inha University)
Publication Information
Journal of Ocean Engineering and Technology / v.36, no.6, 2022 , pp. 390-402 More about this Journal
Abstract
Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.
Keywords
Floating offshore wind turbine; Wave energy converter; Power take-off; 2nd-order wave load; Motion analysis; Nonlinear Froude-Krylov force;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Lee, H., Cho, I.H., Kim, K.H., & Hong, K. (2016). Interaction analysis on deployment of multiple wave energy converters in a floating hybrid power generation platform. Journal of the Korean Society for Marine Environment & Energy, 19(3), 185‒193. https://doi.org/10.7846/JKOSMEE.2016.19.3.185   DOI
2 Matha, D., Fischer, T., Kuhn, M., & Jonkman, J. (2010). Model development and loads analysis of a wind turbine on a floating offshore tension leg platform (No. NREL/CP-500-46725). National Renewable Energy Lab.
3 Muliawan, M.J., Karimirad, M., & Moan, T. (2013). Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter. Renewable Energy, 50, 47‒57. https://doi.org/10.1016/j.renene.2012.05.025   DOI
4 Min, E.H., & Koo, W.C. (2022). Comparison of wave diffraction forces on a surface-piercing body for various free-surface grid update schemes. Ocean Engineering, 259, 111912. https://doi.org/10.1016/j.oceaneng.2022.111912   DOI
5 Oguz, E., Clelland, D., Day, A. H., Incecik, A., Lopez, J.A., Sanchez, G., & Almeria, G.G. (2018). Experimental and numerical analysis of a TLP floating offshore wind turbine. Ocean Engineering, 147, 591‒605. https://doi.org/10.1016/j.oceaneng.2017.10.052   DOI
6 Park, S., Kim, K.H., & Hong, K. (2018). Conceptual design of motion reduction device for floating wave-offshore wind hybrid power generation platform. Journal of Ocean Engineering and Technology, 32(1), 9‒20. https://doi.org/10.26748/KSOE.2018.2.32.1.009   DOI
7 Pantusa, D., Francone, A., & Tomasicchio, G.R. (2020). Floating offshore renewable energy farms. A life-cycle cost analysis at Brindisi, Italy. Energies, 13(22), 6150. https://doi.org/10.3390/en13226150   DOI
8 Ran, Z. (2000). Coupled dynamic analysis of floating structures in waves and currents (Publication No. 9994319) [Doctoral dissertation, Texas A&M University]. ProQuest Dissertations Publishing.
9 Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., & Luan, C. (2014). Definition of the semi submersible floating system for phase II of OC4 (No. NREL/TP-5000-60601). National Renewable Energy Lab.
10 Si, Y., Chen, Z., Zeng, W., Sun, J., Zhang, D., Ma, X., & Qian, P. (2021). The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters. Ocean Engineering, 227, 108835. https://doi.org/10.1016/j.oceaneng.2021.108835   DOI
11 Tsouroukdissian, A.R., Park, S., Pourazarm, P., Cava, W.L., Lackner, M., Lee, S., & Cross-Whiter, J. (2016). Smart novel semi-active tuned mass damper for fixed-bottom and floating offshore wind [Conference presentation]. Offshore Technology Conference 2016, Houston, Texas, USA. https://doi.org/10.4043/26922-MS   DOI
12 Ullah, S., Branquinho, R., Mateus, T., Martins, R., Fortunato, E., Rasheed, T., & Sher, F. (2020). Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applications. Sustainability, 12(24), 10423. https://doi.org/10.3390/su122410423   DOI
13 Yang, J., Teng, B., Gou, Y., Chen, L., & Jin, R. (2020). Half-wave frequency response phenomenon of a tightly moored submerged sphere under monochromatic wave action simulated by using the body-exact approach. Applied Ocean Research, 103, 102317. https://doi.org/10.1016/j.apor.2020.102317   DOI
14 Ren, Y., Venugopal, V., & Shi, W. (2022). Dynamic analysis of a multi-column TLP floating offshore wind turbine with tendon failure scenarios. Ocean Engineering, 245, 110472. https://doi.org/10.1016/j.oceaneng.2021.110472   DOI
15 Chung, W.C., Pestana, G.R., & Kim, M. (2021). Structural health monitoring for TLP-FOWT (floating offshore wind turbine) tendon using sensors. Applied Ocean Research, 113, 102740. https://doi.org/10.1016/j.apor.2021.102740   DOI
16 Adam, F., Myland, T., Dahlhaus, F., & Grossmann, J. (2014, November). Gicon®-TLP for wind turbines-the path of development. In the 1st International Conference on Renewable Energies Offshore (RENEW) (pp. 24‒26).
17 Ansys. (2016). ANSYS aqwa theory manual, release 18.2. ANSYS, Canonsburg.
18 Bae, Y.H., & Kim, M.H. (2013). Rotor-floater-tether coupled dynamics including second-order sum-frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine). Ocean Engineering, 61, 109‒122. https://doi.org/10.1016/j.oceaneng.2013.01.010   DOI
19 Ghafari, H.R., Neisi, A., Ghassemi, H., & Iranmanesh, M. (2021). Power production of the hybrid Wavestar point absorber mounted around the Hywind spar platform and its dynamic response. Journal of Renewable and Sustainable Energy, 13(3), 033308. https://doi.org/10.1063/5.0046590   DOI
20 Giorgi, G., & Ringwood, J.V. (2018). Analytical representation of nonlinear Froude-Krylov forces for 3-DoF point absorbing wave energy devices. Ocean Engineering, 164, 749‒759. https://doi.org/10.1016/j.oceaneng.2018.07.020   DOI
21 Global Wind Energy Council Global (2019), Wind Report 2018, Global Wind Energy Council.
22 Hansen, R.H., Kramer, M.M., & Vidal, E. (2013). Discrete displacement hydraulic power take-off system for the wavestar wave energy converter. Energies, 6(8), 4001‒4044. https://doi.org/10.3390/en6084001   DOI
23 Jonkman, J. (2010). Definition of the floating system for phase IV of OC3 (No. NREL/TP-500-47535). National Renewable Energy Lab.
24 Kim, K.H., Lee, K., Sohn, J.M., Park, S., Choi, J.S., & Hong, K. (2015). Conceptual design of large semi-submersible platform for wave-offshore wind hybrid power generation. Journal of the Korean Society for Marine Environment & Energy, 18(3), 223-232. https://doi.org/10.7846/JKOSMEE.2015.18.3.223   DOI
25 Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab.
26 Jonkman, J. M., & Buhl, Jr, M.L. (2005). Fast user's guide-updated august 2005 (No. NREL/TP-500-38230). National Renewable Energy Lab.
27 Kim, H., Kim, I., Kim, Y.Y., Youn, D., & Han, S. (2016). Simulation and experimental Study of A TLP type floating wind turbine with spoke platform. Journal of Advanced Research in Ocean Engineering, 2(4), 179‒191. https://doi.org/10.5574/JAROE.2016.2.4.179   DOI
28 Kim, M.H. (1991). Second-order sum-frequency wave loads on large-volume structures. Applied ocean research, 13(6), 287‒296. https://doi.org/10.1016/S0141-1187(05)80052-5   DOI
29 Kim, M.H. (1993). Second-harmonic vertical wave loads on arrays of deep-draft circular cylinders in monochromatic uni-and multi-directional waves. Applied ocean research, 15(5), 245‒262. https://doi.org/10.1016/0141-1187(93)90014-O   DOI
30 Kim, M.H., & Yue, D.K. (1989). The complete second-order diffraction solution for an axisymmetric body Part 1. Monochromatic incident waves. Journal of Fluid Mechanics, 200, 235‒264. https://doi.org/10.1017/S0022112089000649   DOI
31 Kim, S.J., Koo, W.C., & Kim, M.H. (2021). The effects of geometrical buoy shape with nonlinear Froude-Krylov force on a heaving buoy point absorber. International Journal of Naval Architecture and Ocean Engineering, 13, 86‒101. https://doi.org/10.1016/j.ijnaoe.2021.01.008   DOI
32 Koo, W.C., & Kim, M.H. (2007). Fully nonlinear wave-body interactions with surface-piercing bodies. Ocean Engineering, 34(7), 1000‒1012. https://doi.org/10.1016/j.oceaneng.2006.04.009   DOI