DOI QR코드

DOI QR Code

Motion Analysis of A Wind-Wave Energy TLP Platform Considering Second-order Wave Forces

  • Hongbhin, Kim (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Eun-hong, Min (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Sanghwan, Heo (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • WeonCheol, Koo (Department of Naval Architecture and Ocean Engineering, Inha University)
  • Received : 2022.09.13
  • Accepted : 2022.11.16
  • Published : 2022.12.31

Abstract

Offshore wind energy has become a major energy source, and various studies are underway to increase the economic feasibility of floating offshore wind turbines (FOWT). In this study, the characteristics of wave-induced motion of a combined wind-wave energy platform were analyzed to reduce the variability of energy extraction. A user subroutine was developed, and numerical analysis was performed in connection with the ANSYS-AQWA hydrodynamic program in the time domain. A platform combining the TLP-type FOWT and the Wavestar-type wave energy converter (WEC) was proposed. Each motion response of the platform on the second-order wave load, the effect of WEC attachment and Power take-off (PTO) force were analyzed. The mooring line tension according to the installation location was also analyzed. The vertical motion of a single FOWT was increased approximately three times due to the second-order sum-frequency wave load. The PTO force of the WEC played as a vertical motion damper for the combined platform. The tension of the mooring lines in front of the incident wave direction was dominantly affected by the pitch of the platform, and the mooring lines located at the side of the platform were mainly affected by the heave of the platform.

Keywords

Acknowledgement

This research was funded and conducted under the Competency Development Program for Industry Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by The Korean Institute for Advancement of Technology (KIAT) (No. P0012646, HRD program for Global Advanced Engineer Education Program for Future Ocean Structures). This research was also supported by the Basic Research Project of Science and Engineering, National Research Foundation of Korea (NRF-2018R1D1A1B07040677).

References

  1. Adam, F., Myland, T., Dahlhaus, F., & Grossmann, J. (2014, November). Gicon®-TLP for wind turbines-the path of development. In the 1st International Conference on Renewable Energies Offshore (RENEW) (pp. 24‒26).
  2. Ansys. (2016). ANSYS aqwa theory manual, release 18.2. ANSYS, Canonsburg.
  3. Bae, Y.H., & Kim, M.H. (2013). Rotor-floater-tether coupled dynamics including second-order sum-frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine). Ocean Engineering, 61, 109‒122. https://doi.org/10.1016/j.oceaneng.2013.01.010
  4. Chung, W.C., Pestana, G.R., & Kim, M. (2021). Structural health monitoring for TLP-FOWT (floating offshore wind turbine) tendon using sensors. Applied Ocean Research, 113, 102740. https://doi.org/10.1016/j.apor.2021.102740
  5. Ghafari, H.R., Neisi, A., Ghassemi, H., & Iranmanesh, M. (2021). Power production of the hybrid Wavestar point absorber mounted around the Hywind spar platform and its dynamic response. Journal of Renewable and Sustainable Energy, 13(3), 033308. https://doi.org/10.1063/5.0046590
  6. Giorgi, G., & Ringwood, J.V. (2018). Analytical representation of nonlinear Froude-Krylov forces for 3-DoF point absorbing wave energy devices. Ocean Engineering, 164, 749‒759. https://doi.org/10.1016/j.oceaneng.2018.07.020
  7. Global Wind Energy Council Global (2019), Wind Report 2018, Global Wind Energy Council.
  8. Hansen, R.H., Kramer, M.M., & Vidal, E. (2013). Discrete displacement hydraulic power take-off system for the wavestar wave energy converter. Energies, 6(8), 4001‒4044. https://doi.org/10.3390/en6084001
  9. Jonkman, J. (2010). Definition of the floating system for phase IV of OC3 (No. NREL/TP-500-47535). National Renewable Energy Lab.
  10. Jonkman, J., Butterfield, S., Musial, W., & Scott, G. (2009). Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab.
  11. Jonkman, J. M., & Buhl, Jr, M.L. (2005). Fast user's guide-updated august 2005 (No. NREL/TP-500-38230). National Renewable Energy Lab.
  12. Kim, H., Kim, I., Kim, Y.Y., Youn, D., & Han, S. (2016). Simulation and experimental Study of A TLP type floating wind turbine with spoke platform. Journal of Advanced Research in Ocean Engineering, 2(4), 179‒191. https://doi.org/10.5574/JAROE.2016.2.4.179
  13. Kim, K.H., Lee, K., Sohn, J.M., Park, S., Choi, J.S., & Hong, K. (2015). Conceptual design of large semi-submersible platform for wave-offshore wind hybrid power generation. Journal of the Korean Society for Marine Environment & Energy, 18(3), 223-232. https://doi.org/10.7846/JKOSMEE.2015.18.3.223
  14. Kim, M.H. (1991). Second-order sum-frequency wave loads on large-volume structures. Applied ocean research, 13(6), 287‒296. https://doi.org/10.1016/S0141-1187(05)80052-5
  15. Kim, M.H. (1993). Second-harmonic vertical wave loads on arrays of deep-draft circular cylinders in monochromatic uni-and multi-directional waves. Applied ocean research, 15(5), 245‒262. https://doi.org/10.1016/0141-1187(93)90014-O
  16. Kim, M.H., & Yue, D.K. (1989). The complete second-order diffraction solution for an axisymmetric body Part 1. Monochromatic incident waves. Journal of Fluid Mechanics, 200, 235‒264. https://doi.org/10.1017/S0022112089000649
  17. Kim, S.J., Koo, W.C., & Kim, M.H. (2021). The effects of geometrical buoy shape with nonlinear Froude-Krylov force on a heaving buoy point absorber. International Journal of Naval Architecture and Ocean Engineering, 13, 86‒101. https://doi.org/10.1016/j.ijnaoe.2021.01.008
  18. Koo, W.C., & Kim, M.H. (2007). Fully nonlinear wave-body interactions with surface-piercing bodies. Ocean Engineering, 34(7), 1000‒1012. https://doi.org/10.1016/j.oceaneng.2006.04.009
  19. Lee, H., Cho, I.H., Kim, K.H., & Hong, K. (2016). Interaction analysis on deployment of multiple wave energy converters in a floating hybrid power generation platform. Journal of the Korean Society for Marine Environment & Energy, 19(3), 185‒193. https://doi.org/10.7846/JKOSMEE.2016.19.3.185
  20. Matha, D., Fischer, T., Kuhn, M., & Jonkman, J. (2010). Model development and loads analysis of a wind turbine on a floating offshore tension leg platform (No. NREL/CP-500-46725). National Renewable Energy Lab.
  21. Muliawan, M.J., Karimirad, M., & Moan, T. (2013). Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter. Renewable Energy, 50, 47‒57. https://doi.org/10.1016/j.renene.2012.05.025
  22. Min, E.H., & Koo, W.C. (2022). Comparison of wave diffraction forces on a surface-piercing body for various free-surface grid update schemes. Ocean Engineering, 259, 111912. https://doi.org/10.1016/j.oceaneng.2022.111912
  23. Oguz, E., Clelland, D., Day, A. H., Incecik, A., Lopez, J.A., Sanchez, G., & Almeria, G.G. (2018). Experimental and numerical analysis of a TLP floating offshore wind turbine. Ocean Engineering, 147, 591‒605. https://doi.org/10.1016/j.oceaneng.2017.10.052
  24. Park, S., Kim, K.H., & Hong, K. (2018). Conceptual design of motion reduction device for floating wave-offshore wind hybrid power generation platform. Journal of Ocean Engineering and Technology, 32(1), 9‒20. https://doi.org/10.26748/KSOE.2018.2.32.1.009
  25. Pantusa, D., Francone, A., & Tomasicchio, G.R. (2020). Floating offshore renewable energy farms. A life-cycle cost analysis at Brindisi, Italy. Energies, 13(22), 6150. https://doi.org/10.3390/en13226150
  26. Ran, Z. (2000). Coupled dynamic analysis of floating structures in waves and currents (Publication No. 9994319) [Doctoral dissertation, Texas A&M University]. ProQuest Dissertations Publishing.
  27. Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., & Luan, C. (2014). Definition of the semi submersible floating system for phase II of OC4 (No. NREL/TP-5000-60601). National Renewable Energy Lab.
  28. Si, Y., Chen, Z., Zeng, W., Sun, J., Zhang, D., Ma, X., & Qian, P. (2021). The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters. Ocean Engineering, 227, 108835. https://doi.org/10.1016/j.oceaneng.2021.108835
  29. Tsouroukdissian, A.R., Park, S., Pourazarm, P., Cava, W.L., Lackner, M., Lee, S., & Cross-Whiter, J. (2016). Smart novel semi-active tuned mass damper for fixed-bottom and floating offshore wind [Conference presentation]. Offshore Technology Conference 2016, Houston, Texas, USA. https://doi.org/10.4043/26922-MS
  30. Ullah, S., Branquinho, R., Mateus, T., Martins, R., Fortunato, E., Rasheed, T., & Sher, F. (2020). Solution combustion synthesis of transparent conducting thin films for sustainable photovoltaic applications. Sustainability, 12(24), 10423. https://doi.org/10.3390/su122410423
  31. Yang, J., Teng, B., Gou, Y., Chen, L., & Jin, R. (2020). Half-wave frequency response phenomenon of a tightly moored submerged sphere under monochromatic wave action simulated by using the body-exact approach. Applied Ocean Research, 103, 102317. https://doi.org/10.1016/j.apor.2020.102317
  32. Ren, Y., Venugopal, V., & Shi, W. (2022). Dynamic analysis of a multi-column TLP floating offshore wind turbine with tendon failure scenarios. Ocean Engineering, 245, 110472. https://doi.org/10.1016/j.oceaneng.2021.110472