• 제목/요약/키워드: FIB Milling

검색결과 38건 처리시간 0.023초

FIB를 이용한 나노가공공정 기술 개발 (Development of Nano Machining Technology using Focused ion Beam)

  • 최헌종;강은구;이석우;홍원표
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.482-486
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies, such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper presents that the recent development and our research goals in FIB nano machining technology are given. The emphasis will be on direct milling, or chemical vapor deposition techniques (CVD), and this can distinguish the FIB technology from the contemporary photolithography process and provide a vital alternative to it. After an introduction to the technology and its FIB principles, the recent developments in using milling or deposition techniques for making various high-quality devices and high-precision components at the micro/nano meter scale are examined and discussed. Finally, conclusions are presented to summarize the recent work and to suggest the areas for improving the FIB milling technology and for studying our future research.

  • PDF

나노스텐실 제작을 위한 FIB 밀링 특성 (FIB milling on nanostencil membrane)

  • 김규만;정성일;오현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2005
  • FIB (Focused ion Beam) milling on a 500-nm-thick silicon nitride membrane was studied in order to fabricate a high-resolution shadow mask, or called a nanostencil. The silicon nitride membrane was fabricated by MEMS processes of LPCVD, photolithography, ICP etching and bulk silicon etching. The apertures made by FIB milling and normal photolithography were compared. The square metal pattern deposited through FIB milled shadow mask showed 6 times smaller comer radius than the case of photolithography. The results show high resolution patterning could be achieved by local deposition through FIB milled shadow-mask.

  • PDF

FIB 밀링을 이용한 나노스텐실 제작 및 나노패터닝 (Fabrication of nanostencil using FIB milling for nanopatterning)

  • 정성일;오현석;김규만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.56-60
    • /
    • 2006
  • A high-resolution shadow mask, or called a nanostencil was fabricated for high resolution lithography. This high-resolution shadowmask was fabricated by a combination or MEMS processes and focused ion beam (FIB) milling. 500 nm thick and $2{\times}2mm$ large membranes wore made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane. By local deposition through the apertures of nanostencil, nanoscale patterns down to 70 nm could be achieved.

FIB 밀링을 이용한 나노스텐실 제작 (Nanostencil fabrication using FIB milling)

  • 김규만;정성일;오현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.871-874
    • /
    • 2004
  • Fabrication of a high-resolution shadow mask, or called nanostencil, is presented. This high-resolution shadowmask is fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. 500 nm thick and 2x2 mm large membranes are made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. Subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to high resolution of FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane.

  • PDF

집속이온빔을 이용한 실리콘 나노 패터닝: 시뮬레이션과 가공 (Silicon Nano Patterning Using Focused ion Beam: Simulation and Fabrication)

  • 한진;민병권;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.489-490
    • /
    • 2006
  • To establish fabrication techniques for nano structure understanding of focused ion beam (FIB) milling process is required. In this study the mathematical model containing the factors related to FIB milling is developed to acquire the optimal fabrication condition. Then, the model is verified by comparison with various nano pattern fabricated in actual FIB system. Consequently, it is demonstrated that the nano patterns with the smallest pitch can be fabricated using developed FIB milling model.

  • PDF

FIB milling을 이용한 고정밀 다이아몬드공구 제작과 공정에 관한 연구 (A study on the fabrication and processing of ultra-precision diamond tools using FIB milling)

  • 위은찬;정성택;김현정;송기형;최영재;이주형;백승엽
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.56-61
    • /
    • 2020
  • Recently, research for machining next-generation micro semiconductor processes and micro patterns has been actively conducted. In particular, it is applied to various industrial fields depending on the machining method in the case of FIB (Focused ion beam) milling. In this study, intends to deal with FIB milling machining technology for ultra-precision diamond tool fabrication technology. Ultra-precision diamond tools require nano-scale precision, and FIB milling is a useful method for nano-scale precision machining. However, FIB milling has a problem of Gaussian characteristics that are differently formed according to the beam current due to the input of an ion beam source, and there are process conditions to be considered, such as a side clearance angle problem of a diamond tool that is differently formed according to the tilting angle. A series of process steps for fabrication a ultra-precision diamond tool were studied and analyzed for each process. It was confirmed that the effect on the fabrication process was large depending on the spot size of the beam and the current of the beam as a result of the experimental analysis.

집속 이온빔 가공변수에 따른 Au 에칭 특성 연구 (The ocused Ion Beam Etching Characteristic of Au)

  • 박진주;김성동
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.129-133
    • /
    • 2007
  • Focused Ion Beam(FIB) systems is a useful tool for the fabrication of micro-nano scale structures. In this study, the effects of FIB etching on the Au microstructure are systematically investigated. As the fabrication parameters, ion dose, dwell time and beam overlap ratio are studied. First, the increases of Ga ion dose makes the milling yield higher and the sidewall of milling profile steeper. Dwell time is found to have little effects on the milling profile due to the relatively large milling area of $1\times1{\mu}m^2$ used in this study. However, beam overlap significantly affects not only milling rate but also milling profile. As the beam overlap ratio changes from positive to negative, the development of regular cross-stripe patterns at the bottom with low milling rate is observed.

나노스텐실 제작을 위한 집속이온빔 밀링 특성 (Focused Ion Beam Milling for Nanostencil Lithography)

  • 김규만
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.245-250
    • /
    • 2011
  • A high-resolution shadow mask, a nanostencil, is widely used for high resolution lithography. This high-resolution shadowmask is often fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. In this study, FIB milling on 500-nm-thin SiN membrane was tested and characterized. 500 nm thick and $2{\times}2$ mm large membranes were made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 60 nm could be made into the membrane. The nanostencil could be used for nanoscale patterning by local deposition through the apertures.

Method of Ga removal from a specimen on a microelectromechanical system-based chip for in-situ transmission electron microscopy

  • Yena Kwon;Byeong-Seon An;Yeon-Ju Shin;Cheol-Woong Yang
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • In-situ transmission electron microscopy (TEM) holders that employ a chip-type specimen stage have been widely utilized in recent years. The specimen on the microelectromechanical system (MEMS)-based chip is commonly prepared by focused ion beam (FIB) milling and ex-situ lift-out (EXLO). However, the FIB-milled thin-foil specimens are inevitably contaminated with Ga+ ions. When these specimens are heated for real time observation, the Ga+ ions influence the reaction or aggregate in the protection layer. An effective method of removing the Ga residue by Ar+ ion milling within FIB system was explored in this study. However, the Ga residue remained in the thin-foil specimen that was extracted by EXLO from the trench after the conduct of Ar+ ion milling. To address this drawback, the thin-foil specimen was attached to an FIB lift-out grid, subjected to Ar+ ion milling, and subsequently transferred to an MEMS-based chip by EXLO. The removal of the Ga residue was confirmed by energy dispersive spectroscopy.

FIB를 이용한 니켈코발트 복합실리사이드 미세 배선의 밀링 가공 (Milling of NiCo Composite Silicide Interconnects using a FIB)

  • 송오성;윤기정
    • 한국산학기술학회논문지
    • /
    • 제9권3호
    • /
    • pp.615-620
    • /
    • 2008
  • 저저항 배선층으로 쓰일 수 있는 선폭 $0.5{\mu}m$, 70nm 높이의 폴리실리콘 패턴에 $10nm-Ni_{1-x}Co_x$(x=0.2, 0.6, and 0.7)의 금속 박막을 열증착법으로 성막하고 쾌속 열처리 (RTA) 온도를 $700^{\circ}C$$1000^{\circ}C$로 달리하여 실리사이드화 공정을 실시하여 상부에 니켈코발트 실리사이드를 형성시켰다 이때의 미세구조를 확인하고 FIB (focused ion beam)를 활용하여 저에너지 조건 (30kV-10 pA-2 sec)에서 배선층을 국부적으로 조사하여 실리사이드 층의 선택적 제거 가능성을 확인하였다. 실험 범위내의 실리사이드화 온도 범위와 NiCo 상대 조성 범위에서 주어진 FIB 조건으로 선택적으로 저저항 실리사이드 층의 제거가 가능하였으나, 상대적으로 Co 함유량이 많은 실리사이드는 배선층 내부에서 기포가 발생하였으며, 이러한 기포로 인해 실리사이드 층만의 국부적 제거는 불가능하였다.