• Title/Summary/Keyword: FIB

Search Result 337, Processing Time 0.028 seconds

A Study on the Tribolayer using Focused Ion Beam (FIB) (FIB를 이용한 트라이보층에 대한 연구)

  • Kim, Hong-Jin
    • Tribology and Lubricants
    • /
    • v.26 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • Focused Ion Beam (FIB) has been used for site-specific TEM sample preparation and small scale fabrication. Moreover, analysis on the surface microstructure and phase distribution is possible by ion channeling contrast of FIB with high resolution. This paper describes FIB applications and deformed surface structure induced by sliding. The effect of FIB process on the surface damage was explored as well. The sliding experiments were conducted using high purity aluminum and OFHC(Oxygen-Free High Conductivity) copper. The counterpart material was steel. Pin-on-disk, Rotational Barrel Gas Gun and Explosively Driven Friction Tester were used for the sliding experiments in order to investigate the velocity effect on the microstructural change. From the FIB analysis, it is revealed that ion channeling contrast of FIB has better resolution than SEM and the tribolayer is composed of nanocrystalline structures. And the thickness of tribolayer was constant regardless of sliding velocities.

FIB Machining Characteristic Analysis according to $Ga^+$ Ion Beam Current (집속이온빔의 전류변화에 따른 미세가공 특성분석)

  • Kang, Eun-Goo;Choi, Byeong-Yeol;Hong, Won-Pyo;Lee, Seok-Woo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2006
  • FIB equipment can perform sputtering and chemical vapor deposition simultaneously. It is very advantageously used to fabricate a micro structure part having 3D shape because the minimum beam size of ${\Phi}10nm$ and smaller is available. Since general FIB uses very short wavelength and extremely high energy, it can directly make a micro structure less than $1{\mu}m$. As a result, FIB has been probability in manufacturing high performance micro devices and high precision micro structures. Until now, FIB has been commonly used as a very powerful tool in the semiconductor industry. It is mainly used for mask repair, device correction, failure analysis, IC error correction, etc. In this paper FIB-Sputtering and FIB-CVD characteristic analysis were carried out according to $Ga^+$ ion beam current that is very important parameter for minimizing the pattern size and maximizing the yield. Also, for FIB-Sputtering burr caused by redeposition of the substrate characteristic analysis was carried out.

Development of polymorphism genetic marker for identification of the silkworm races (누에 피브로인 유전자 다형성 마커 개발)

  • Choi, Kwang-Ho;Kim, Seong-Ryul;Kang, Seok-Woo;Piao, Yulan;Kim, Sung-Wan;Kim, Kee-Young
    • Journal of Sericultural and Entomological Science
    • /
    • v.53 no.2
    • /
    • pp.124-129
    • /
    • 2015
  • We have previously characterized the complete fibroin light chain gene from one of the silkworm race Baegokjam (Bombyx mori) and found two variable regions (FibL1, intron 2 ~ 3; FibL2, intron 6) with the primer sets designed to cover these variable regions. In this study, we tested the utility of these variable regions as genetic markers for classifying silkworm races. For the purpose, Europian races (Q, PK), Chinese races (C26, C31), Japanese races (N15, N9), and tropical races (SA2, SA5) were used in this experiment. The polymorphism of the FibL1 and FibL2 were divided into two and three types, respectively. The combination of the FibL1 and FibL2 polymorphisms were constant within the same races. The result suggest that the primer sets designed from two variable regions of fibroin light chain gene may be useful as the genetic markers for silkworm races.

Development of a multi-functional nano-fabrication system for fabrication and measurement (가공 및 측정이 가능한 복합나노가공시스템의 개발)

  • 장동영;박만진;김진현;한동철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.466-471
    • /
    • 2004
  • In focused-ion-beam (FIB) application of micromachining and device transplantation, four kinds of FIB processes, namely FIB sputtering, FIB-induced etching, redeposition, and FIB-induced deposition, are well utilized. As with FIB systems, scanning electron microscopes(SEMs) were extensively used in the semiconductor industry. They are the tools of choice for defect review and providing the image resolution needed for process monitoring. The enhanced capabilities of a dual-column on one chamber system are quickly becoming realized by the nano industry for performing a wide range of application.

  • PDF

Development of Nano Machining Technology using Focused ion Beam (FIB를 이용한 나노가공공정 기술 개발)

  • 최헌종;강은구;이석우;홍원표
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.482-486
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies, such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper presents that the recent development and our research goals in FIB nano machining technology are given. The emphasis will be on direct milling, or chemical vapor deposition techniques (CVD), and this can distinguish the FIB technology from the contemporary photolithography process and provide a vital alternative to it. After an introduction to the technology and its FIB principles, the recent developments in using milling or deposition techniques for making various high-quality devices and high-precision components at the micro/nano meter scale are examined and discussed. Finally, conclusions are presented to summarize the recent work and to suggest the areas for improving the FIB milling technology and for studying our future research.

  • PDF

FIB milling on nanostencil membrane (나노스텐실 제작을 위한 FIB 밀링 특성)

  • Kim G.M.;Chung S.I.;Oh H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.318-321
    • /
    • 2005
  • FIB (Focused ion Beam) milling on a 500-nm-thick silicon nitride membrane was studied in order to fabricate a high-resolution shadow mask, or called a nanostencil. The silicon nitride membrane was fabricated by MEMS processes of LPCVD, photolithography, ICP etching and bulk silicon etching. The apertures made by FIB milling and normal photolithography were compared. The square metal pattern deposited through FIB milled shadow mask showed 6 times smaller comer radius than the case of photolithography. The results show high resolution patterning could be achieved by local deposition through FIB milled shadow-mask.

  • PDF

Manufacturing Mechanism of FIB-CVD using Focused Ion Beam (집속이온빔의 가공 공정 메카니즘 연구)

  • 강은구;최병열;이석우;홍원표;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.925-928
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper was carried out some experiments and verifications of mechanism on FIB-CVD using SMI8800 made by Seiko. FIB-CVD has in fact proved to be commercially useful for repair processes because the beam can be focused down to 0.05$\mu\textrm{m}$ dimensions and below and because the same tool can be used to sputter off material with sub-micrometer precision simply by turning off the gas ambient. Recently the chemical vapour deposition induced ion beam has been required more deposition rate and accurate pattern because of trying to manufacture many micro and nano parts. Therefore this paper suggested the optimization parameters and discussed some mechanism of chemical vapour deposition induced ion beam on FIB-CVD for simple pattern.

  • PDF

A Site Specific Characterization Technique and Its Application

  • Kamino, T.;Yaguchi, T.;Ueki, Y.;Ohnish, T.;Umemura, K.;Asayama, K.
    • 한국전자현미경학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.18-22
    • /
    • 2001
  • A technique to characterize specific site of materials using a combination of a dedicated focused ion beam system(FIB), and Intermediate-voltage scanning transmission electron microscope(STEM) or transmission electron microscope(TEM) equipped with a scanning electron microscope(SEM) unit has been developed. The FIB system is used for preparation of electron transparent thin samples, while STEM or TEM is used for localization of a specific site to be milled in the FIB system. An FIB-STEM(TEM) compatible sample holder has been developed to facilitate thin sample preparation with high positional accuracy Positional accuracy of $0.1{\mu}m$ or better can be achieved by the technique. In addition, an FIB micro-sampling technique has been developed to extract a small sample directly from a bulk sample in a FIB system These newly developed techniques were applied for the analysis of specific failure in Si devices and also for characterization of a specific precipitate In a metal sample.

  • PDF

Development of Micro Plasma Electrode using Focused Ion Beam (FIB를 이용한 마이크로 플라즈마 전극 개발)

  • Choi Hon-Zong;Kang Eun-Goo;Lee Seok-Woo;Hong Won-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.175-180
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. In this research, fabrication of micro plasma electrode was carried out using FIB. The one of problems of FIB-sputtering is the redeposition of material including Ga+ ion source during sputtering process. Therefore the effect of the redeposition was verified by EDX. And the micro plasma electrode of copper was fabricated by FIB.