• Title/Summary/Keyword: FFT

Search Result 1,739, Processing Time 0.036 seconds

Acceleration of FFT on a SIMD Processor (SIMD 구조를 갖는 프로세서에서 FFT 연산 가속화)

  • Lee, Juyeong;Hong, Yong-Guen;Lee, Hyunseok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.97-105
    • /
    • 2015
  • This paper discusses the implementation of Bruun's FFT on a SIMD processor. FFT is an algorithm used in digital signal processing area and its effective processing is important in the enhancement of signal processing performance. Bruun's FFT algorithm is one of fast Fourier transform algorithms based on recursive factorization. Compared to popular Cooley-Tukey algorithm, it is advantageous in computations because most of its operations are based on real number multiplications instead of complex ones. However it shows more complicated data alignment patterns and requires a larger memory for storing coefficient data in its implementation on a SIMD processor. According to our experiment result, in the processing of the FFT with 1024 complex input data on a SIMD processor, The Bruun's algorithm shows approximately 1.2 times higher throughput but uses approximately 4 times more memory (20 Kbyte) than the Cooley-Tukey algorithm. Therefore, in the case with loose constraints on silicon area, the Bruun's algorithm is proper for the processing of FFT on a SIMD processor.

Implementation of Precise Level Measurement Device using Zoom FFT (Zoom FFT를 이용한 정밀 레벨 측정 장치의 구현)

  • Ji, Suk-Joon;Lee, John-Tark
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.504-511
    • /
    • 2012
  • In this paper, level instrument is implemented using beat frequency for distance measurement which means the difference between Tx and Rx signal frequency from FMCW Radar Level Transmitter. Beat frequency is analyzed through Fast Fourier Transform of which frequency precision can be improved by applying Zoom FFT. Distance precision is improved from 146.5[mm] to 5[mm] using the advantage of Zoom FFT which can raise the frequency precision without changing the sampling frequency or FFT point number to be fixed in the beginning of designing signal processing. Also, measurement error can be reduced within 2[mm] by incresing the FFT points using the method of Spline interpolation. For verifying the effectiveness of this Zoom FFT to FMCW Radar Level Transmitter, test bench is made to measure the distance for every 1[mm] between 700[mm] and 2000[mm] and measurement error can be checked in the range of ${\pm}2$[mm].

A single-memory based FFT/IFFT core generator for OFDM modulation/demodulation (OFDM 변복조를 위한 단일 메모리 구조의 FFT/IFFT 코어 생성기)

  • Yeem, Chang-Wan;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • This paper describes a core generator (FFT_Core_Gen) which generates Verilog HDL models of 8 different FFT/IFFT cores with $N=64{\times}2^k$($0{\leq}k{\leq}7$ for OFDM-based communication systems. The generated FFT/IFFT cores are based on in-place single memory architecture, and use a hybrid structure of radix-4 and radix-2 DIF algorithm to accommodate various FFT lengths. To achieve both memory reduction and the improved SQNR, a conditional scaling technique is adopted, which conditionally scales the intermediate results of each computational stage, and the internal data and twiddle factor has 14 bits. The generated FFT/IFFT cores have the SQNR of 58-dB for N=8,192 and 63-dB for N=64. The cores synthesized with a $0.35-{\mu}m$ CMOS standard cell library can operate with 75-MHz@3.3-V, and a 8,192-point FFT can be computed in $762.7-{\mu}s$, thus the cores satisfy the specifications of wireless LAN, DMB, and DVB systems.

  • PDF

A Study on the Analysis Method of Tracking Process using Voltage Waveforms (전압파형을 이용한 트래킹 진전과정 분석방법에 관한 연구)

  • Jee, Sung-Wook;Lee, Chun-Ha;Yoon, Dae-Hee;Song, Hyun-Jik;Shim, Kwang-Yul;Park, Won-Ju;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.30-35
    • /
    • 2006
  • Voltage is generally and exactly measured in the electric and electronic field. So, we studied method for detecting electric equipment faulty state using only electric voltage. It is called the Partition-FFT. Tracking is simulated by method and tester proceed on IEC 60112. We analyze voltage waveforms by tracking tester with Partition-FFT. As the result tracking process is clearly distinguished by 6 steps. Tracking is one of the major reason of electric accidents. The Partition-FFT is using a digital oscilloscope and a computer software. If Partition-FFT analysis is applied to the electricity facilities, We can prevent from happenning electric accidents cause of tacking breakdown with low prices and easy measurment. Most of all, Partition-FFT is system that make a visual tacking process. So, everyone is able to detect to possibility of electric accidents.

Design of Efficient FFT Processor for IEEE 802.16e Mobile WiMax Systems (IEEE 802.16e Mobile WiMax 시스템을 위한 효율적인 FFT 프로세서 설계)

  • Park, Youn-Ok;Park, Jong-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.97-102
    • /
    • 2010
  • In this paper, an area-efficient FFT processor is proposed for IEEE 802.16e mobile WiMax systems. The proposed scalable FFT processor can support the variable length of 128, 512, 1024 and 2048. By reducing the required number of non-trivial multipliers with mixed-radix (MR) and multi-path delay commutator (MDC) architecture, the complexity of the proposed FFT processor is dramatically decreased without sacrificing system throughput. The proposed FFT processor was designed in hardware description language (HDL) and synthesized to gate-level circuits using 0.18um CMOS standard cell library. With the proposed architecture, the gate count for the processor is 46K and the size of memory is 64Kbits, which are reduced by 16% and 27%, respectively, compared with those of the 4-channel radix-2 MDC (R2MDC) FFT processor.

A Generator of 64~8,192-point FFT/IFFT Cores with Single-memory Architecture for OFDM-based Communication Systems (OFDM 기반 통신 시스템용 단일 메모리 구조의 64~8,192점 FFI/IFFFT 코어 생성기)

  • Yeem, Chang-Wan;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.205-212
    • /
    • 2010
  • This paper describes a core generator (FCore_Gen) which generates Verilog-HDL models of 640 different FFT/IFFT cores with selected parameter value for OFDM-based communication systems. The generated FFT/IFFT cores are based on in-place single memory architecture and use a hybrid structure of radix-4 and radix-2 DIF algorithm to accommodate various FFT lengths. To achieve both memory reduction and the improved SQNR, a conditional scaling technique is adopted, which conditionally scales the intermediate results of each computational stage. The cores synthesized with a $0.35-{\mu}m$ CMOS standard cell library can operate with 75-MHz@3.3-V, and a 8,192-point FFT can be computed m $762.7-{\mu}s$, thus the cores satisfy the specifications of wireless LAN, DMB, and DVB systems.

A Variable-Length FFT/IFFT Processor for Multi-standard OFDM Systems (다중표준 OFDM 시스템용 가변길이 FFT/IFFT 프로세서)

  • Yeem, Chang-Wan;Shin, Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.209-215
    • /
    • 2010
  • This paper describes a design of variable-length FFT/IFFT processor (VL_FCore) for OFDM-based multi-standard communication systems. The VL_FCore adopts in-place single-memory architecture, and uses a hybrid structure of radix-4 and radix-2 DIF algorithms to accommodate various FFT lengths in the range of $N=64{\times}2^k\;(0{\leq}k{\leq}7)$. To achieve both memory size reduction and the improved SQNR, a two-step conditional scaling technique is devised, which conditionally scales the intermediate results of each computational stage. The performance analysis results show that the average SQNR's of 64~8,192-point FFT's are over 60-dB. The VL_FCore synthesized with a $0.35-{\mu}m$ CMOS cell library has 23,000 gates and 32 Kbytes memory, and it can operate with 75-MHz@3.3-V clock. The 64-point and 8,192-point FFT's can be computed in $2.25-{\mu}s$ and $762.7-{\mu}s$, respectively, thus it satisfies the specifications of various OFDM-based systems.

Design of Current-to-Voltage Converter for the Current-mode FFT LSI in 0.35um processing (0.35um 공정에서 OFDM 용 전류모드 FFT LSI를 위한 I-V Converter 설계)

  • Bae, Seong-Ho;Hong, Sun-Yang;Jeon, Seong-Yong;Kim, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.469-472
    • /
    • 2007
  • 최근 많은 광대역 유무선 통신 응용분야에서 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 표준기술로 채택하고 있다 OFDM 방식의 고속 무선 데이터 통신를 위한 FFT 프로세서는 일반적으로 DSP(Digital Signal Processing)로 구현되었으나, 큰 전력 소비를 필요로 한다. OFDM의 단점인 전력문제를 보안하기 위해서 Current-mode FFT LSI가 제안되었다. 본 논문에서는 Current-mode FFT LSI의 구현을 위한 저전력 IVC를 설계하였다. 설계된 IVC는 FFT Block의 출력이 $13.65{\mu}A$ 이상일 때에 3V 이상의 전압을 출력하고, FFT Block의 출력이 $0.15{\mu}A$ 이하일 때에 0.5V 이하의 전압을 출력한다. 그리고 IVC의 총 소모전력은 약 1.65mW이다. $0.35{\mu}A$ 공정에서의 저전력 IVC를 설계함으로서, $0.35{\mu}A$ 공정에서의 Current-mode FFT LSI의 설계가 가능해졌다. 저전력 OFDM 통신용 Current-mode FFT LSI는 무선통신의 발전에 기여할 것으로 전망한다.

  • PDF

A Research on Low-power FFT(Fast Fourier Transform) Design for Multiband OFDM UWB(Ultra Wide Band) Communication System (Multiband OFDM UWB(Ultra Wide Band) 통신시스템을 위한 저전력 FFT(Fast Fourier-Transform) 설계에 관한 연구)

  • Ha, Jong-Ik;Kim, In-Soo;Min, Hyoung-Bok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2119.1_2120.1
    • /
    • 2009
  • UWB(Ultra Wide Band)는 차세대 무선통신 기술로 무선 디지털펄스라고도 한다. GHz대의 주파수를 사용하면서도 초당 수천~수백만 회의 저출력 펄스로 이루어진 것이 큰 특징이다[1]. 기존 무선통신 기술의 양대 축인 IEEE 802.11과 블루투스 등에 비해 속도와 전력소모 등에서 월등히 앞서고 있으며, SoC(System on a Chip)의 저전력 구현에 대한 연구가 활발히 진행되고 있다. OFDM은 크게 FFT(Fast Fourier Transform) 블록, Interpolation /decimation 필터 블록, 비터비 블록, 변복조 블록, 등화기 블록 등으로 구성된다. 고속 시스템에서는 대역효율성이 우수한 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 사용하고 있으며, OFDM 전송방식은 직렬로 입력되는 데이터 열을 병렬 데이터 열로 변환한 후에 부반송파에 실어 전송하는 방식이다. 이와 같은 병렬화와 부반송파를 곱하는 동작은 IFFT와 FFT로 구현이 가능한데, FFT 블록의 구현 비용과 전력소모를 줄이는 것이 핵심사항이라고 할 수 있다. 기존논문에서는 OFDM용 FFT 구조로 단일버터플라이연산자 구조, 파이프라인 구조, 병렬구조 등의 여러 구조가 제안되었다[2]. 본 논문에서는 Radix-8 FFT 알고리즘 기반의 New partial Arithmetic 저전력 FFT 구조를 제안하였다. 제안한 New partial Arithmetic 저전력 FFT구조는 곱셈기 대신 병렬 가산기를 이용 하여 지금까지 사용되는 FFT 구조보다 전력소모를 줄일 수 있음을 보였다.

  • PDF

FFT based Monitoring System for Combustion Vibration Data Processing of Gas Turbine (가스터빈 연소진동 데이터 처리를 위한 FFT 기반의 모니터링 시스템)

  • Lee, Sang-Hyeok;Kang, Feel-Soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.12
    • /
    • pp.2327-2334
    • /
    • 2007
  • This paper presents a method for improvement of communication speed and reduction of data storage space in gas turbine monitoring system to acquire, save, and display combustion vibration data. The proposed method implements FFT from sampled raw data. The FFT result data are encoded to be transferred to monitoring PC for storage. By this way, it can reduce data storage space. To display the received data, it needs inverse FFT to reconstruct original signal. To verify the validity and efficiency of the proposed scheme, computer-aided simulation are carried out. It includes the analyzed results the relationship between FFT's order and Gibb's Phenomenon. Finally, high-performance of the proposed method is proved by combustion experiment results using a prototype gas turbine.