• 제목/요약/키워드: FEM tuning

검색결과 23건 처리시간 0.021초

FEM과 BEM을 사용한 소리굽쇠 분석 (Tuning Fork Analysis using FEM and BEM)

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Park, Yeun-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.401.2-401
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork length and width. (omitted)

  • PDF

FEM과 BEM을 사용한 소리 굽쇠 분석 (Tuning Fork Analysis using FEM and BEM)

  • 장순석;이제형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1049-1053
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork length and width. Analytical model equations were derived from the numerically relating results of the modal frequency-tuning fork length by approximating minimization. Finally the BEM was used for the sound pressure field calculation from the structural displacement data.

  • PDF

FEM과 BEM을 사용한 소리굽쇠 특성 해석 및 설계 (TUNING Fork Analysis and Design by FEM AND BEM)

  • Jarng, Soon-Suck;Kwon, You-Jung
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.1201-1204
    • /
    • 2003
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method(FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width. An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis results. Finally the BEM was used fur the sound pressure field calculation from the structural displacement data.

  • PDF

Tuning Fork Modal Analysis and Sound Pressure Calculation Using FEM and BEM

  • Jarng, Soon-Suck;Lee, Je-Hyung
    • The Journal of the Acoustical Society of Korea
    • /
    • 제21권3E호
    • /
    • pp.112-118
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width. An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis results. Finally the BEM was used for the sound pressure field calculation from the structural displacement data.

FEM과 BEM을 사용한 소리 굽쇠 분석 (Tuning Fork Analysis using FEM and FEM)

  • 장순석;이제형;최은영
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.465-468
    • /
    • 2002
  • An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork length and width. Analytical model equations were derived from the numerically relating results of the modal frequency-tuning fork length by approximating minimization. Finally the BEM was used for the sound pressure field calculation from the structural displacement data.

  • PDF

머시닝센터 회전 결합부의 정강성 Tuning 기법 (Static Stiffness Tuning Method of Rotational Joint of Machining Center)

  • 김양진;이찬홍
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.797-803
    • /
    • 2010
  • A method has been developed to tune the static stiffness at a rotation joint considering the whole machine tool system by interactive use of finite element method and experiment. This paper describes the procedure of this method and shows the results. The method uses the static experiment on measurement model which is set-up so that the effects of uncertain factors can be excluded. For FEM simulation, the rotation joint model is simplified using only spindle, bearing and spring. At the rotation joint, the damping coefficient is ignored, The spindle and bearing is connected by only spring. By static experiment, 500 N is forced to the front and behind portion of spindle and the deformation is measured by capacitive sensor. The deformation by FEM simulation is extracted with changing the static stiffness from the initial static stiffness considering only rotation joint. The tuning static stiffness is obtained by exploring the static stiffness directly trusting the deformation from the static experiment. Finally, the general tuning method of the static stiffness of machine tool joint is proposed using the force stream and the modal analysis of machine tool.

디스크 브레이크와 패드의 마찰열에 의한 열적거동에 관한 연구 (A Study on the Thermal Behaviors of Disk Brake and Pad by Friction Heat)

  • 한승철
    • 한국융합학회논문지
    • /
    • 제10권12호
    • /
    • pp.287-292
    • /
    • 2019
  • 본 논문은 자동차 제동성능에 대한 운전자의 요구에 따라 브레이크 디스크 튜닝이 많이 이루어지고 있어, 자동차에 사용되고 있는 순정 디스크와 튜닝제품으로 나오고 있는 디스크의 열적거동을 FEM해석을 통해 분석하였다. 순정 디스크 모델링 및 튜닝 디스크 Model-1, Model-2, Model-3로 모델링을 하고 디스크 회전속도를 1000rpm으로 설정하여 해석을 실시하였다. 브레이크를 작동하면 디스크와 패드 접촉에 의해 발생하는 작동시 온도와 디스크 정지 후 마찰면의 온도, 열 변형 등 디스크 표면의 열적거동에 대하여 분석하였다. 브레이크 작동시(0-4.5초) 온도는 순정 디스크보다 튜닝 디스크가 34℃높게 나타났고, 디스크 정지 후(40.5초) 온도는 튜닝 디스크가 18℃낮게 분석되었으며, 디스크 열에 의한 변형은 튜닝 디스크가 0.3mm정도 많이 변형되었다. 순정 디스크와 튜닝 디스크의 열적거동에 따른 페이드 현상 등을 줄일 수 있는 효과는 있으나, 튜닝 디스크의 홀 가공 및 디스크 면 가공에 따른 열적거동에는 크게 변화가 없음을 관찰할 수 있었다.

An Estimation of a Billet Temperature during Reheating Furnace Operation

  • Jang, Yu-Jin;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.43-50
    • /
    • 2007
  • Reheating furnace is an essential facility of a rod mill plant where a billet is heated to the required rolling temperature so that it can be milled to produce wire. Although it is very important to obtain information on billet temperatures, it is not feasible during furnace operation. Consequently, a billet temperature profile should be estimated. Moreover, this estimation should be done within an appropriate time interval for an on-line application. In this paper, a billet heat transfer model based on 2D FEM(Finite Element Method) with spatially distributed emission factors is proposed for an on-line billet temperature estimation and also a measurement is carried out for two extremely different furnace operation patterns. Finally, the difference between the model outputs and the measurements is minimized by using a new optimization algorithm named uDEAS(Univariate Dynamic Encoding Algorithm for Searches) with multi-step tuning strategy. The obtained emission factors are applied to a simulation for the data which are not used in the model tuning for validation.

Exterior Acoustic Holography Reconstruction of a Tuning Fork Using Inverse Non-singular BEM

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권1E호
    • /
    • pp.11-18
    • /
    • 2003
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near field pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used for the initial exterior pressures which are at first calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is, used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 ㎐ resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

역 비고유치 BEM을 사용한 소리 굽쇠의 외부 음향 홀로그래픽 재현 (Exterior Acoustic Holography Reconstruction of a Tuning Fork using Inverse Non-singular BEM)

  • 장순석;이제형
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.306-311
    • /
    • 2002
  • Non-singular boundary element method (BEM) codes are developed in acoustics application. The BEM code is then used to calculate unknown boundary surface normal displacements and surface pressures from known exterior near Held pressures. And then the calculated surface normal displacements and surface pressures are again applied to the BEM in forward in order to calculate reconstructed field pressures. The initial exterior near field pressures are very well agreed with the later reconstructed field pressures. Only the same number of boundary surface nodes (1178) are used far the initial exterior pressures which are initially calculated by Finite Element Method (FEM) and BEM. Pseudo-inverse technique is used for the calculation of the unknown boundary surface normal displacements. The structural object is a tuning fork with 128.4 Hz resonant. The boundary element is a quadratic hexahedral element (eight nodes per element).

  • PDF