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Abstract
An unconstrained tuning fork with a 3-D model has been
numerically analyzed by Finite Element Method (FEM) and
Boundary Element Method (BEM). The first three natural
frequencies were calculated by the FEM modal analysis. Then
the change of the modal frequencies was examined with the
variation of the tuning fork length and width. Analytical model
equations were derived from the numerically relating results of
the modal frequency-tuning fork length by approximating
minimization. Finally the BEM was used for the sound pressure

field calculation from the structural displacement data.

1. Introduction

The tuning fork was firstly invented in England by Royal
trumpeter John Shore in 1711 [1]. A tuning fork has its natural
(modal) frequencies according to its materialistic and structural
fabrication. Even though the tuning fork has a long history, its
numerical analysis is not well known. Many questions about
the tuning fork might be arisen; the variation of the tuning fork
length, the effect of the tuning fork width size, the sound
pressure intensity around the tuning fork and material aspects
etc. This paper answers to those questions. An unconstrained
tuning fork with a 3-D model has been numerically analyzed by
Finite Element Method (FEM) and Boundary Element Method
(BEM). The FEM is used for calculation of modal frequencies
and modal shapes {displacements) while the BEM is used for
calculation of sound pressure in the 3-D space generated by the

tuning fork at the natural frequency. This paper deals with not

only the analysis of the tuning fork but also the practical design

of the tuning fork.

2. Numerical Methods
2.1 Finite Element Method (FEM)
The following equation (1} is the integral formulation of the

FEM elastic equations:

{F} = [kfa} - 22 [M)ia} M

2.2 Boundary Element Method (BEM)
For sinusoidal steady-state problems, the Helmholtz equation,

Vz‘}'+k2'{-"-0

represents the fluid mechanics. ¥ is the
acoustic pressure with time variation, ¢/, and k(=0 /c) is
the wave number. ¢ is the sound speed, 340 [m/sec]. In order to
solve the Helmholtz equation in an infinite air media, a solution
to the equation must not only satisfy structural surface

boundary condition (BC), ¥/dn=ppa’ e, but also the

radiation condition at infinity, H“m f, (0w rar + jkTFdSzO‘
—0

8t6n represents differentiation atong the outward normal to
the boundary. os and @, are the fluid density and the
normal displacement on the structural surface. The Helmholtz
integral equation derived from Green's second theorem

provides such a solution for radiating pressure waves;
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where  G{p.a)=e X ram . r=jp-q

p is any point in either the interior or the exterior and g is the
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surface point of integration. g (p) is the exterior solid angle at
]

. -th .
The acoustic pressure for the I global node, w(p;), is

{12icn2 )
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expressed in discrete form [3]:
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where nt is the total number of surface elements and a,, ; are
three dimensional displacements. When equation (3e) is
globatly assembled, the discrete Helmholtz: equation can be
represented as

(4] sl D} = +p po?[8]ia} @)
where [A] and [B] are square matrices of (ng; by ng) size. ng is

the total number of surface nodes.

When the impedance matrices of equation (4), [A] and [B], are
computed, two types of singularity arise [4]. One is that the
Green's function of the equation, G, (p,-,q) , becomes infinite as
q approaches to p; . This problem is solvec by mapping such
rectangular local coordinates into triangulai local coordinates
and again inte polar local coordinates [5]. The other is that at
certain wave number the matrices become ill-conditioned.
These wave number are corresponding to :igenvalues of the
interior Dirichlet problem [6]. One approach to overcome the
matrix singularity is that [A] and [B] of equation (4) are
modified to provide a unique solution for tte entire frequency
range [7-10]. The modified matrix equation referved to as the
modified Helmholtz gradient formulatioe. (HGF) [10] is
obtained by adding a multiple of an extra itegral equation to
equation {4).

(4]- slr]e alchw} = +0 0’ (5] @ a[oDis} )
The derivation of the extra matrices [C), D] are well described

by Francis D.T.I. [10].

(¥} = 0,2 4®) 52} ®)

Since the present acoustic vibrator produces displacement data

{o} at a natural frequency, the surface pressure {¥)of the
tuning fork is calculated from equation (8). Once {o} and {w}
are known, the acoustic pressure in the far field is determined
by ﬂ(p)ul of equation (2) for given values of surface nodal
pressure and surface nodal displacement;

nt 8§ nt 8
¥(p)= T T A!m,j'{"m‘j—Pfﬁz T IBmjom %)
m=t jul m=l j=1

3. Resuits

The particular structure considered is an unconstrained tuning
fork (Fig. 2). The whole tuning fork had been divided into 550
isoparametric elements . Global node numbers are 3934 nodes.
Table 1 shows the material properties of the air, steel and
atuminum. The first three natural frequencies were calculated

from the FEM equation (1) where {F}=0. In modal analysis

{a} isan eigenvectorand 1= (coz) is an eigenvalue.

[k Yo} = il e o o2 ) (10)
Fig. 3 shows the modal shape of the tuning fork at 128.4 Hz (1*
mode). The length and the width of the tuning fork are 152.4
[mm] and 25.4 [tam]. And the applied material is steel (4130).
The green frame is the undeformed shape of the tuning fork
while the solid color shows the Von Mises stress (Equation 11)

with deformed shape.

J0-5i°l'°'2)2+(02'03)2+(“3'01)2] (mn

where O, O,, 0, are stresses in X, ¥, Z coordinates.
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Fig. 2 3D tuning fork dimensicns. Elements=550. Nodes=3934

Table 1 Material Properties

approximating minimization (Table 2). Solid coentinuous lines

of Fig. 4 were drawn from the analytical model equations for

increased with the reduced size of the tuning fork length.

ndal freguencies ag functions ol tuning tork fength. widttm25 4 imm]

The fisit three mi
msi.. ’ )
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Fig. 4 The first three modal frequencies as functions of tuning

fork length.
Circle=1* mode, Diamond=2"¢ mode, Rectangle=3" mode.

Density ( #} | Young’s Modulus | Poisson Ratio each mode. And Fig 5 shows the comparison in percentage [%)]
[Kg;m3] (E)[ ~/ ,,,2] (V) between FEM results and model equations. The most
Air 1.22 1.411ES - significant difference happened at the 3% mode with 25.4 fmm)
Steel 7822.9 2.0684E11 0.30 tuning fork length, that is, 44%. But the rests of the results are
Aluminum | 2703.8 6.9637E10 0.36 within 8% differences.
Table 2 Analytical model equations for each tuning fork mode, x [m)]
1* Mode 2" Mode 3% Mode
Model 2.0859 17759 2040
Equations 219 s 77
Fig. 3 Modal shape of tuning fork (Color=Von Mises Stress) - C‘:;j"*‘*sm "?‘“""’“f’“‘ 1esuts and moder eauations .
at 128.4 Hz (1% mode), Length=152.4 [mm], Width=25.4 (mm)], o /O T
Material=Steel(4130) s ;? \‘"“\-‘::j;
Then the change of the modal frequencies was calculated with Z e ,’
the variation of the tuning fork length and width. Fig. 4 shows g _:, ", _____
the first three modal frequencies as functions of tuning fork 8 25+ /
length with a constant width. Each symbol indicates different 0 1,""
modal frequencies (Circle=1® mode, Diamond=2" mode, 'j: ,’
Rectangle=3" mode). Modal frequencies are exponentially -452205' " 5 i s S —

Length ¢f Tuning Fork lmm]
Fig. 5 Comparison in percentage (%] between FEM results
and model equations. Circle=1" mode, Diamond=2™ mode,
Rectangle=3" mode.
Table 3 shows that the change of the tuning fork width does not
much affect the variation of the modal frequencies. Also Fig. 5
shows that the modal frequencies of the tuning fork remain
almost the same as Fig. 4 though the material is changed from
steel (continuous line) to aluminum (dashed line). These results
show that the length of the tuning fork mainly affects the
natural frequencies of the tuning fork as far as metallic
materials are used.
Table 3 Modal frequencies with different tuning fork width
Length=152.4 [mm], Material=Steel(4130)

Width Frequency [Hz]}

Analytical model equations were derived from the numerically

relating results of the modal frequency-tuning fork length by
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[mm) ‘ ¥ 2 3
mode mode mode
50.8 93.5 198.9 525.2
38.1 125.6 3395 559.5
25.4 128.5 374.1 587.7
12.7 128.6 391.2 576.7
6.3 124.2 395.2 525.5

The firsit three modal treguencies as functions of tuning fork fegth. width=25.4 {mm.
16",

Frequoncy In Lag [Mz]

Length of Tunlng Fork (mml

Fig. 6 The first three modal frequencies as functions of tuning
fork length as Fig. 4. Continuous Lines=Steel. Dashed

Lines=Aluminum

Finally the BEM was used for the sound pressure field
calculation from the structural displacerrent data. From
equation {9) the acoustic pressure in the far field is calculated
along the circle with the directivity angle gf’ (Fig. 7). The
normalized value of the far field pressure is used as the
quantitative degree of the directivity. Fig. 7 shows the acoustic
pressure directivity patiemn at 1 [m} away from the tuning fork
at 128 .4 Hz (1* mode). Because the modal frequency is low, the
directivity pattern is almost omni-directional. And Fig. 8 shows

the acoustic pressure radiation pattern of Fig. .
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Fig. 7 Acoustic pressure directivity pattern at | [m] away from
the wning fork. at 128.4 Hz (1" mode), Length=152.4 [mm],
Width=25.4 [mm], Material=Steel(4]30)

4. Conclusion

It is concluded that the length of the tuning fork mainly affects
the natural frequencies of the tuning fork as far as metallic
materials are used. Table 2 showed the designing factor of the
tuning fork fabrication. The length of the tuning fork may be
changed for a desired first modal frequency such as A pitch
(=440Hz) etc. Fig. 8 showed the acoustic pressure radiation
pattern generated by the tuning fork. This can be further used

for a particular radiation pattern synthesis.

Fig. 8 Acoustic pressure radiation pattern of Fig. 7
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