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Abstract

An unconstrained tuning fork with a 3-D model has been 

numerically analyzed by Finite Element Method (FEM) and 

Boundary Element Method (BEM). The first three natural 

frequencies were calculated by the FEM modal analysis. Then 

the change of the modal frequencies was examined with the 

variation of the tuning fork length and width. Analytical model 

equations were derived from the numerically relating results of 

the modal frequency-tuning fork length by approximating 

minimization. Finally the BEM was used fbr the sound pressure 

field calculation from the structural displacement data.

1. Introduction

The tuning fork was firstly invented in England by Royal 

trumpeter John Shore in 1711 [1]. A tuning fork has its natural 

(modal) frequencies according to its materialistic and structural 

fabrication. Even though the tuning fork has a long history, its 

numerical analysis is not well known. Many questions about 

the tuning fork might be arisen; the variation of the tuning fork 

length, the effect of the tuning fork w^th size, the sound 

pressure intensity around the tuning fork and material aspects 

etc. This paper answers to those questions. An unconstrained 

Uming fork with a 3-D model has been numerically analyzed by 

Fi디te Element Method (FEM) and Boundary Element Method 

(BEM). The FEM is used fbr calculation of modal frequencies 

and modal shapes (displacements) while the BEM is used fbr 

calculation of sound pressure in the 3-D space generated by the 

tuning fork at the natural frequency. This paper deals with not 

only the analysis of the tuning fork but also the practical design 

of the tuning fork.

2. Numerical Methods

2.1 Finite Element Method (FEM)

The following equation (1) is the integral fbrm니ation of the 

FEM elastic equations:

｛小 [째e｝-温[硏｛e｝ ⑴

2.2 Boundary Element Method (BEM)

For sinusoidal steady-state problems, the Helmholtz equation, 

屮= o represents the fluid mechanics. 甲 is the 

acoustic pressure with time variation, e询,and k(=(y /c) is 

the wave number, c is the sound speed, 340 [m/sec]. In order to 

solve the Helmholtz equation in an infinite air media, a solution 

to the equation must not o끼y satisfy structural surface 

boundary condition (BC), &¥/5n = py(y2 an but also the 

radiation condition at infinity, lim + jk^ds = o .
叶*。

d/dn represents differentiation along the outward normal to 

the boundary, pj- and an are the fluid density and the 

normal displacement on the structural surface. The Helmholtz 

integral equation derived from Green's second theorem 

provides such a solution for radiating pressure waves;

f j虬)쯔回 - 야 (p, 弟仞｝粉 顼p) 虬) ⑵

[ 緬 dnq丿

where G*Q,q)=e，하，御 , r =

p is any point in either the interior or the exterior and q is the 
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surface point of integration, p (p) is the ext<;rior solid angle at

P
The acoustic pressure fbr the 产 global node, 따(9), is 

expressed in discrete form [3]: ( \ <i ng ) 

{0} at a natural frequency, the surface pressure {w} of the 

tuning fork is calculated from equation (8). Once 싸 and {中}

are known, the acoustic pressure in the far field is determined 

by 8— = 1 of equation (2) fbr given values of surface nodal

P(PiNS) = % 마(q)f-Gk(pi'q)쁴(3a) 
I dnq dnv J

pressure and surface nodal displacement;
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亩 m,并 mJ (3e)

where nt is the total number of surface elements and am j are 

three dimensional displacements. When equation (3e) is 

globally assembled, the discrete Helmholtz equation can be 

represented as 

(叫』咖} = +。/艸]사 ⑷

where [A] and [B] are square matrices of (ng by ng) size, ng is 

the total number of surface nodes.

When the impedance matrices of equation (4), [A] and [B], are 

computed, two types of singularity arise [£]. One is that the 

Green's function of the equation, Gk{phq), becomes infinite as 

q approaches to . This problem is solvec by mapping such 

rectangular local coordinates into triangulai local coordinates 

and again into polar local coordinates [5]. 丁he other is that at 

certain wave number the matrices becorie ill-conditioned. 

These wave number are corresponding to eigenvalues of the 

interior Dirichlet problem [6]. One approach to overcome the 

matrix singularity is that [A] and [B] of equation (4) are 

modified to provide a unique solution for ti e entire frequency 

range [7니 0]. The modified matrix equation referred to as the 

modified Helmholtz gradient fbrmulatior. (HGF) [10] is 

obtained by adding a multiple of an extra i itegral equation to 

equation (4).

(14"[小。杞咖} = +P // ([小 迎])사 (5)

The derivation of the extra matrices [C], [D] are well described 

by Francis D.T.L [10].

{'p} = +py-<u2(^®)-1B®(a} (8)

Since the present acoustic vibrator produces displacement data

3. Results

The particular structure considered is an unconstrained tuning 

fork (Fig. 2). The whole tuning fork had been divided into 550 

isoparametric elements . Global node numbers are 3934 nodes.

Table 1 shows the material properties of the air, steel and 

aluminum. The first three natural frequencies were calculated 

from the FEM equation (1) where {戶} =0. In modal analysis 

{0} is an eigenvector and A s ^2)is an eigenvalue.

[새a} = a[a/](zj} |= ®2[A/]{a}) (10)

Fig. 3 shows the modal shape of the tuning fork at 128.4 Hz (1st 

mode). The length and the width of the tuning fork are 152.4 

[mm] and 25.4 [mm]. And the applied material is 마eel (4130).

The green frame is the undefbrmed shape of the tuning fork 

while the solid color shows the Vbn Mises stress (Equation 11) 

with deformed shape.

」이이 - )2 + (°2 — 门 )2 + (町 - 하 )? ] (11)

where O" , Cf2, % are stresses in x, y, z coordinates,
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Table 1 Material Properties

Fig. 2 3D tuning fork dimensions. Elements=550. Nodes=3934

Density (p) 

[Kg/m ]

Young's Modulus 

(E)[""2]

Poisson Ratio

(V)

Air 1.22 1.411E5 -

Steel 7822.9 2.0684E11 0.30

Aluminum 2703.8 6.9637E10 0.36

Fig. 3 Modal shape of tuning fork (Color=Von Mises Stress) 

at 128.4 Hz (1st mode), Length= 152.4 [mm], Width=25.4 [mm], 

Material=Steel(4130)

Then the change of the modal frequencies was calculated with 

the variation of the tuning fork length and width. Fig. 4 shows 

the first three modal frequencies as functions of tuning fork 

length with a constant width. Each symbol indicates different 

modal frequencies (Circle느 1" mode, Diamond드21서 mode, 

Rectangle=3rd mode). Modal frequencies are exponentially 

increased with the reduced size of the tuning fork length.

The firsit three modal frequencies as functions ot lunino fork length. width=25.4 [mm]

105i............ r.......................... T.............；.............>............ ............... 

approximating minimization (Table 2). Solid continuous lines 

of Fig. 4 were drawn from the analytical model equations fbr 

each mode. And Fig 5 shows the comparison in percentage [%] 

between FEM results and model equations. The most 

significant difference happened at the 3rd mode with 25.4 [mm] 

tuning fork length, that is, 44%. But the rests of the results are 

within 8% differences.

Table 2 Analytical model equations for each tuning fork mode, x [m]

1st Mode 2nd Mode 3rd Mode

Model 2.0859 17.759 21.040

Equations
2.19 X 1.62 X 1.77 X

조
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Fig. 4 The first three modal frequencies as functions of tuning 

fork length.

Circle느 1 机 mode, Diamond=2nd mode, Rectangle=3rd mode.

Analytical model equations were derived from the numerically 

relating results of the modal frequency-tuning fork length by

Companson between FCM results and model equations 
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Fig. 5 Comparison in percentage [%] between FEM results 

and model equations. Circle=lst mode, Diamond=2nd mode, 

Rectangle 드 3“ mode.

Table 3 shows that the change of the tuning fork width does not 

much affect the variation of the modal frequencies. Also Fig. 5 

shows that the modal frequencies of the tuning fork remain 

almost the same as Fig. 4 though the material is changed from 

steel (continuous line) to aluminum (dashed line). These results 

show that the length of the tuning fork mai이y affects the 

natural frequencies of the tuning fork as far as metallic 

materials are used.

Table 3 Modal frequencies with different tuning fork width 

Length=152.4 [mm], Material=Steel(4130)

Width Frequency [Hz]
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[mm] 1st

mode

2nd

mode

3rd

mode

50.8 93.5 198.9 525.2

38.1 125.6 339.5 559.5

25.4 128.5 374.1 587.7

12.7 128.6 391.2 576.7

6.3 124.2 395.2 525.5
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Fig. 6 The first three modal frequencies as functions of tuning 

fork length as Fig. 4. Continuous Lines=Steel. Dashed 

Lines=Aluminum

Finally the BEM was used for the sound pressure field 

calculation from the structural displacerrent data. From 

equation (9) the acoustic pressure in the far Held is calculated 

along the circle with the directivity angle 0 (Fig. 7). The 

normalized value of the far field pressure is used as the 

quantitative degree of the directivity. Fig. 7 shows the acoustic 

pressure directivity pattern at 1 [m] away from the tuning fork 

at 128.4 Hz (1st mode). Because the modal fretjuency is low, the 

directivity pattern is almost omni-directional. \nd Fig. 8 shows 

the acoustic pressure radiation pattern of Fig.
8eam Pattern linear Sccto)
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Fig. 7 Acoustic pressure directivity pattern at 1 [m] away from 

the tuning fork, at 128.4 Hz (1st mode), Length=l52.4 [mm], 

Width=25.4 [mm], Material=Steel(4130)

4. Conclusion

It is concluded that the length of the tuning fork mainly affects 

the natural frequencies of the tuning fork as far as metallic 

materials are used. Table 2 showed the designing factor of the 

tuning fork fabrication. The length of the tuning fork may be 

changed for a desired first modal frequency such as A pitch 

(=440Hz) etc. Fig. 8 showed the acoustic pressure radiation 

pattern generated by the tuning fork. This can be further used 

fbr a particular radiation pattern synthesis.

Fig. 8 Acoustic pressure radiation pattern of Fig. 7
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