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Abstract

An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and
Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then
the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width.
An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis resuits.

Finally the BEM was used for the sound pressure field calculation from the structural displacement data.
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l. Introduction

The tuning fork was firstly invented in England by
Royal trumpeter John Shore in 1711[1]. A tuning fork has
its natural (modal) frequencies according to its materi-
alistic and structural fabrication. Even though the tuning
fork has a long history, its modal and acoustic analysis
has not performed much. The tuning fork itself is sur-
prisingly unstudied in numerical approach. There are a
few references about the tuning fork analysis in analytical
approach in 1930s{2]. The numerical approach has been
available only since Boundary Element Method (BEM)
technique overcame its singularity problems(3,4]). There
has been no evidence of application for the tuning fork
analysis using the BEM with Finite Element Method
{FEM). It is therefore very meaningful to apply the BEM
with the FEM to the tuning fork analysis because the
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mechanical behavior of the tuning fork may be predicted
using the FEM-BEM numerica! techniques. Many ques-
tions about the tuning fork might be arisen; the variation
of the tuning fork length, the effect of the tuning fork
width size, the sound pressure intensity around the tuning
fork and material aspects etc. This paper answers to some
of those questions, An unconstrained tuning fork with a
3-D model has been numerically analyzed by the FEM
and the BEM. The FEM is used for calculation of modal
frequencies and modal shapes (displacements) while the
BEM is used for calculation of sound pressure in the 3-D
space generated by the tuning fork at the natural frequency.
This paper deals with not only the analysis of the tuning
fork but also the practical design of the tuning fork.

. Numerical Methods

2.1. Finite Element Method (FEM)

The following equation (1) is the integral formulation
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Figure 1. 3D quadratic hexahedral 20 nodes’ element.

of the FEM elastic equations:

Ft=[Kla)— o[ M) a} (1)

where
{F} Applied Mechanical Force
{a} Elastic Displacement
[K] Elastic Stiffness Matrix
[M] Mass Matrix
w Angular Frequency

The isoparametric formulation for 3-dimensional struc-
tural elements is well documented by Allik H. et. al.[5].
Each 3-dimensional finite element is composed of 20
quadratic nodes and each node has nodal displacement
( 24, a,, @,) variables. In local coordinates the finite
element has 6 surface planes (£xy, tyz, +zx) which may
be exposed to extemal air environment. The exposed
surface is used as a boundary element which is composed
o’ 8 quadratic nodes.

2.2. Boundary Element Method (BEM)

For sinusoidal steady-state problems, the Helmholiz
equation, v 2P+ £ ¥=( represents the fluid mechanics.
¥ is the acoustic pressure with time variation, ¢, and
k(= w /c) is the wave number. ¢ is the sound speed, 340
[pVsec]. In order to solve the Helmholtz equation in an
infinite air media, a solution to the equation must not only
satisfy structural surface boundary condition (BC), a%/an
=:p;@’a, but also the radiation condition at infinity,
im_ $(2W/ar+ jkB)'dS=0. 3/an represents differen
tiation along the outward normal to the boundary. o, and

a, are the fluid density and the normal displacement on

the structural surface. The Helmholtz integral equation
derived from Green's second theorem provides such a
solution for radiating pressure waves;

${ @22 L 605, 022D Va5, = iy W) @)

where Gy(p,@)=e */dnr, r=|p—ql

In equation (2) p is any point in either the interior or
the exterior and ¢ is the surface point of integration. 8 (p)
is the exterior solid angle at p.

The acoustic pressure for the * global node, ¥(p,), is
expressed in discrete form[6];
(1 <i<ng)

%00%0) = §{ 10 POL - G5, LFD s,

In,
(3a)
= £.J(r0 5L Gy, 0¥ D as, g,
(3b)
- Glb0) B0 T5 0 Nas, (o)
- £ B[ ot as o,

0t B S [, OGS dnS am, G

= 3 SAL T 0d S BB, (o)

where nt is the total number of surface elements and 4, ;
are three dimensional displacements. Equation (3b) is
derived from equation (3a) by discretizing integral surface.
And equation (3¢) is derived from equation (3b) since an
acoustic pressure on an integral surface is interpolated
from adjacent 8 quadratic nodal acoustic pressures corre-
sponding the integral surface. Then equation (3d) is
derived from equation (3¢} by swapping integral notations
with summing notations. Finally the parentheses of equation
(3d) is expressed by upper capital notations for simplicity.
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When equation (3e) is globally assembled, the discrete
Helmholtz equation can be represented as

(LA]- A {P =+ p;0* [ Bl{a} 4)

where [A] and [B] are square matrices of (ng by ng) size.
ng is the total number of surface nodes.

When the impedance matrices of equation {4), [A] and
[B], are computed, two types of singularity arise[7]. One
is that the Green’s function of the equation, Gi(#,, @),
becomes infinite as q approaches to p; This problem is
solved by mapping such rectangular local coordinates into
triangular local coordinates and again into polar local
coordinates[8]. The other is that at certain wave number
the matrices become ill-conditioned. These wave number
are corresponding to eigenvalues of the interior Dirichlet
problem[9}. One approach to overcome the matrix singu-
larity is that [A] and [B] of equation (4) are modified to
provide a unique solution for the entire frequency range
[10-12]. The modified matrix equation referred to as the
modified Helmholtz gradient formulation (HGF)[13] is
obtained by adding a multiple of an extra integral equation
to equation (4).

([A) - ANDal K VY =+ 0,0 ([ BIDal DI at  (5)

where

a=- —1
k- (Nmber of surface element adjacent a surface node)

[C] and [D] are rectangular matrices of (nt by ng) size.
& symbol indicates that the rows of [C], [D} corre-
sponding to surface elements adjacent to a surface node
are added to the row of [A], [B] corresponding to the
surface node, that is,

% 5a60-5 Sacr+ £ E(Ee cmi)

t= =

% Smin= 8 Snint £ E( Ee pim i)

' ©)

where S(i) is the number of surface element adjacent to
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a surface node. Equation (6) may be reduced in its
formulation using superscript € for convenience;

A¥(® =1 0,0°B%a) (7

where ([Al—-AN@al CD=A%, ([BIDd D))=5®

Equation (7) can be written as
{B)=+0,0%(A®) B ®)

Since the present acoustic vibrator produces displacement
data {q} at a natural frequency, the surface pressure { ¥}
of the tuning fork is calculated from equation (8). Once

{a} and { &} are known, the acoustic pressure in the near
field is determined by #(p)=1 of equation (2) for given
values of surface nodal pressure and surface nodal dis-
placement;

Tp,)= »21 i:‘A i ¥ — 070 i:l ngme,:‘ (9)

[ll. Results

The FEM and BEM have been programmed with
Fortran language running at 2 PC with 2G RAM. Calcu-
lation is done with double precision and the program is
made for three dimensional structures. Because each
structural node has 3 DOF, the size of the globally
assembled coefficient matrices of the matrix equation are
3*ng by 3*ng. The particular structure considered is an
unconstrained tuning fork (Fig. 2). The whole tuning fork
is modeled using 550 isoparametric elements. Global node
numbers are 3934 nodes. It is desired to have more
elements representing smaller local regions for higher
frequency analysis. However, calculation with more number
of nodes costs more time. Therefore meshing of elements
depends on the maximal limit of interesting frequency. It
is a common practice to have the size of the largest
element to be less than A/3[6]. In this paper the interest
frequency of the acoustic radiation is less than 10,000 Hz,
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Figure 2. 3D tuning fork dimensions. Elements=550. Nodes=3934.

Tnble 1. Material properties.

Density {0} | Young's Modulus | Poisson Ratio
| Ke/m'] &) [ Mt ()
Air 122 1.411E5 -
 Steel 78229 2.0684E {1 0.30
CAuminum | 27038 6.9637E10 0.36

so that A/3 is about 11.3 mm.

Table 1 shows the material properties of the air, steel
and aluminum. The first three natural frequencies were
celculated from the FEM equation (1) where {#F}=0. In

modal analysis {2} is an eigenvector and A={«?) is an

eigenvalue.

(Kl a} = A MH (=’ M a}) (10

Fig. 3 shows the modal shape of the tuning fork at 128.4
Hz (1¥ mode). The length and the width of the tuning fork
are 152.4 [mm] and 25.4 [mm)]. And the applied material
is steel (4130). The green frame is the undeformed shape
of the tuning fork while the solid color shows the Von
Mises stress (Equation 11) with deformed shape.

Firure 3. Modal shape of tuning fork (Color=Von Mises Stress) at 1284 Hz {1™ mode), Length=152.4 [mml, Width=25.4 (mm], Material

=Steel(4130)
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The firsit three modal lraquencies as functions of Wning fok lenglh. width=25.4 {mm]
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Figure 4. The firs! three modal freguencies as functions of tuning
fork length.
Gircle=1% mo+de, Diamand=2" mode, Rectangle=3" mode.
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where ¢,, @, o, are stresses in X, y, z coordinates.

Then the change of the modal frequencies was calcu-
lated with the varation of the tuning fork length and

Table 2. Analytical model equations for each tuning fork mode,

x [m],
1% Mode 2 Mode 3 Mode
Mode] Equations _2;0%& 1—1,%3 %

Comparison between FEM results and model equations
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Figure 5, Comparisan in percentage [%] between FEM results and
mode! equations.
Circle=1% mode, Diamond=2" mode, Rectangle=3" mode.
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width. Fig. 4 shows the first three modal frequencies as
functions of tuning fork length with a constant width. Each
symbol indicates different modal frequencies (Circle=1*
mode, Diamond=2" mode, Rectangle=3" mode). Modal
frequencies are exponentially increased with the reduced
size of the tuning fork length.

A relationship for the natural frequencies-tuning fork
length were derived from the numerical analysis results
(Table 2). Solid continuous lines of Fig. 4 were drawn
from the analytical mode! equations for each mode. And
Fig. 5 shows the comparison in percentage [%] between
FEM results and model equations. The most significant
difference happened at the 3" mode with 25.4 [mm] tuning
fork length, that is, 44%. But the rest of the results show
less than 8% differences.

Table 3 shows that the change of the tuning fork width
does not significantly affect of the modal frequencies. Also
Fig. 6 shows that the modal frequencies of the tuning fork
remain almost the same as Fig. 4 though the material is
changed from stee! (continuous line} to aluminum (dashed
line). These results show that the length of the tuning fork
mainly affects the natural frequencies of the tuning fork
as far as metallic materials are used.

Table 4 compares of modal frequencies between the

Table 3. Modal frequencies with different tuning fork width
Length=152.4 [mm], Material=Steel (4130).

Frequency [Hzl
Width fmml 1* made 2 mode 3 mode
508 935 198.9 525.2
38.1 125.6 3395 5595
254 1285 3741 587.7
127 1286 391.2 576.7
6.3 1242 395.2 5255

Table 4. Comparison of modal frequencies between the present
results and Algor results[14]. Length=152.4 [mm],
Width=25.4 [mml, Material=Steel (4130).

Results Frequency [tz]
1* made 2 mode 3 mode
Author’s 128.5 3741 5877
Algor's 127.9 3689 603.4
Difference 06 5.2 -154
% 05 14 27




The fisit three modal frequencies as functions of tuning lork length. widih=25.4 (mm)
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Figure 6. The first three modal frequencies as functions of
tuning fork length as Fig. 4.
Continuous Lines=5Steel. Dashed Lines=Aluminum.

Figure 8. Acoustic pressure radiation pattern of Fig. 7.
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Fiqure 7. Acoustic pressure directivity pattern at 1 [m) away from the iuning fork. At 1284 Hz (1% mode), Length=1524 [mmi,

Width=25.4 [mm], Material=Steel (4130).

prisent results and Algor results[14]. The difference between
two results slightly increased with higher modal frequency.

Finally the BEM was used for the sound pressure field
calculation from the structural displacement data. From
equation (9) the acoustic pressure in the near field is
caculated along the circle with the directivity angle ¢
(F g. 7). The normalized value of the near field pressure
is used as the quantitative degree of the directivity. Fig.
7 shows the acoustic pressure directivity pattern at 1 [m]
away from the tuning fork at 128.4 Hz (1¥ mode). Because
the modal frequency is low, the directivity pattern is

almost omni-directional. And Fig. 8 shows the acoustic
pressure radiation pattern of Fig. 7[15].

V. Conclusion

It is very meaningful to apply the BEM with the FEM
to the tuning fork analysis because the mechanical behavior
of the tuning fork may be numerically predicted using the
FEM-BEM techniques. Even though the structure of the

tuning fork is simple and is well known, its numerical
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analysis is surprisingly undone. The quantitative analysis

of the tuning fork in this paper suggests further numerical:

research of mechanically sound generating devices. That
is, the geometry of the tuning fork can be changed as far
as different functionality is concerned such as acoustic
pressure radiation pattemn. It is concluded that the length
of the tuning fork mainly affects the natural frequencies
of the tuning fork as far as metallic materials are used.
The width of the tuning fork does not much produce
differences in modal frequencies. Numerically formulated
table can be used as the designing factor of the tuning fork
fabrication, The length of the tuning fork may be changed
for a desired first modal frequency such as A pitch (=440
Hz) etc. This work need to be further developed for a
particular radiation pattern synthesis.
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