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Abstract

An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method (FEM) and 

Boxindary Element Method (BEM). The first three natural frequencies were calculated by the FEM modal analysis. Then 

the trend of the change of the modal frequencies was examined with the variation of the tuning fork length and width. 

An formula for the natural frequencies-tuning fork length relationship were derived from the numerical analysis results. 

Finally the BEM was used for the sound pressure field calculation from the structural displacement data.
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I. Introduction

The tuning fork was firstly invented in England by 

Royal trumpeter John Shore in 1711(1]. A tuning fork has 

its natural (modal) frequencies according to its materi­

alistic and structural fabrication. Even though the tuning 

fork has a long histoiy, its modal and acoustic analysis 

has not performed much. The tuning fork itself is sur­

prisingly unstudied in numerical approach. There are a 

few references about the tuning fork analysis in analytical 

approach in 1930s[2]. The numerical approach has been 

available only since Boundary Element Method (BEM) 

technique overcame its singularity problems[3,4]. There 

has been no evidence of application for the tuning fork 

analysis using the BEM with Finite Element Method 

(FEM). It is therefore very meaningful to apply the BEM 

with the FEM to the tuning fork analysis because the 
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mechanical behavior of the tuning fork may be predicted 

using the FEM-BEM numerical techniques. Many ques­

tions about the tuning fork might be arisen; the variation 

of the tuning fork length, the effect of the tuning fork 

width size, the sound pressure intensity around the tuning 

fork and material aspects etc. This paper answers to some 

of those questions. An unconstrained tuning fork with a 

3-D model has been numerically analyzed by the FEM 

and the BEM. The FEM is used for calculation of modal 

frequencies and modal shapes (displacements) while the 

BEM is used for calculation of sound pressure in the 3-D 

space generated by the tuning fork at the natural frequency. 

This paper deals with not only the analysis of the tuning 

fork but also the practical design of the tuning fork.

II. Numerical Methods

2.1. Finite Element Method (FEM)
The following equation (1) is the integral formulation
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the structural surface. The Helm血이tz integral equation 

derived from Green's second theorem provides such a 

solution for radiating pressure waves;

s( 0(5)쯔쓰— ~ G心, q)E靜 jd& = 阶) 卽3) (2)

Fig니re 1. 3D quadratic hexahedral 20 nodes*  element.
where q) = e~lkrr=\p~q\

of the FEM elastic equations:

*} = [K]{a} 一疽[脚 J} (1)

where

{F} Applied Mechanical Force

(a} Elastic Displacement

[X] Elastic Stiffness Matrix

[M] Mass Matrix

cd Angular Frequency

The isoparametric formulation for 3-dimensional struc­

tural elements is well documented by Allik H. et. al.[5]. 

Each 3-dimensional finite element is composed of 20 

quadratic nodes and each node has nodal displacement 

(ayi variables. In local coordinates the finite 

element has 6 surface planes (±xy, ±yz, ±zx) which may 

be exposed to external air environment. The exposed 

surface is used as a boundary element which is composed 

of 8 quadratic nodes.

2,2. Boundary Element Method (BEM)
For sinusoidal steady-state problems, the Helmholtz 

e([uation, 卽+ 炉罗=o represents the fluid mechanics. 

切 is the acoustic pressure with time variation, e jca\ and 

k(=仞/c) is the wave number, c is the sound speed, 340 

[ni/sec]. In order to solve the Helmholtz equation in an 

infinite air media, a solution to the equation must not only 

satisfy structural surface boundary condition (BC), dW/dn

PfO)2 an but also the radiation condition at infinity, 

侏프o 争$(洪7龄+顶枷)以5= 0. d/dn represents differen 

tiation along the outward normal to the boundary. pf and 

an are the fluid density and the normal displacement on

In equation (2) p is any point in either the interior or 

the exterior and q is the surface point of integration. B(P) 

is the exterior solid angle at p.

The acoustic pressure fbr the ith global node,叭"is 

expressed in discrete fbrm[6];

(1 M zM ng)

60) 00) = 理6 으으쓺土 GS g) 鸞当吗

' '(3a)

= Si fs.( 叭小쯔鷲쓰 - ", 广靜)q v S”

(3b)
=象以备恥)叽•竺紀

- G{pit q)尊*( q)鷲了 )dS« (3c)

= 為林匚驴)匹쓰쓰씨%

_ 0，展着言：』fs N^Gkpi, q)nQdS^amJ (3d) 

=性*; A "縛"厂P,疽 st砒”％, (3e)
m— 1 J= 1 m— ;= 1 

where nt is the total number of surface elements and am y 

are three dimensional displacements. Equation (3b) is 

derived from equation (3a) by discretizing integral surface. 

And equation (3c) is derived from equation (3b) since an 

acoustic pressxire on an integral surface is interpolated 

from adjacent 8 quadratic nodal acoustic pressures corre­

sponding the integral surface. Then equation (3d) is 

derived from equation (3c) by swapping integral notations 

with summing notations. Finally the parentheses of equation 

(3d) is expressed by upper capital notations for simplicity.
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When equation (3e) is globally assembled, the discrete 

Helmholtz equation can be represented as

([A] 一瓦1){舛=+叩说剧{"} (4)

where [A] and [B] are square matrices of (ng by ng) size, 

ng is the total number of surface nodes.

When the impedance matrices of equation (4), [A] and 

[B], are computed, two types of singularity arise[7]. One 

is that the Green*s  fimction of the equation, Gk(Pi, d)-> 

becomes infinite as q approaches to This problem is 

solved by mapping such rectangular local coordinates into 

triangular local coordinates and again into polar local 

coordinates。]. The other is that at certain wave number 

the matrices become ill-conditioned. These wave number 

are corresponding to eigenvalues of the interior Dirichlet 

problem[9]. One approach to overcome the matrix singu­

larity is that [A] and [B] of equation (4) are modified to 

provide a unique solution for the entire frequency range 

[10-12]. The modified matrix equation referred to as the 

modified Helmh이tz gradient formulation (HGF)[13] is 

obtained by adding a multiple of an extra integral equation 

to equation (4).

([A] 一伊刀㊉ a[C]){W} = +0 疽([剧㊉。LD])也} (5)

where

a = ________________________________ £HI_______________________________
— k • {Nmber of surface element adjacent a surface node)

[C] and [D] are rectangular matrices of (nt by ng) size. 

® symbol indicates that the rows of [C], [D] corre­

sponding to surface elements adjacent to a surface node 

are added to the row of [A], [B] corresponding to the 

surface node, that is,

2 &433)= 2,交/(新)+ S, 2( 2： a C(妇) 

t- 1 ]= 1 ;=1 ]= 1 1= 1 )= 1\ m= 1 /

ne ne ne ne JIS. JIS, / sLU. \Si 毋(>)=£ 辭(3)+ £ S(君a ZXm,；))

(6)

where S(i) is the number of surface element adjacent to 

a surface node. Equation (6) may be reduced in its 

formulation using superscript ® for convenience;

A®{W} = +pfa)2B®{a} (7)

where ([4] —6W㊉a[C])三4电

Equation (7) can be written as

{^ = +pfa)\A®YXB®{a} (8)

Since the present acoustic vibrator produces displacement 

data {G at a natural frequency, the surface pressure (弗 

of the tuning fork is calculated from equation (8). Once 

(a} and {聆 are known, the acoustic pressure in the near 

field is determined by = 1 of equation (2) for given 

values of sxirface nodal pressure and surface nodal dis­

placement;

冬5)= (9)m= 1 /= 1 m= 1 丿=1

III. Results

The FEM and BEM have been programmed with 

Fortran language running at a PC with 2G RAM. Calcu­

lation is done with double precision and the program is 

made for three dimensional structures. Because each 

structural node has 3 DOF, the size of the globally 

assembled coefficient matrices of the matrix equation are 

3*ng  by 3*ng.  The particular structure considered is an 

unconstrained tuning fork (Fig. 2). The whole tuning fork 

is modeled using 550 isoparametric elements. Global node 

d니mbers are 3934 nodes. It is desired to have more 

elements representing smaller local regions for higher 

frequency analysis. However, calculation with more number 

of nodes costs more time. Therefore meshing of elements 

depends on the maximal limit of interesting frequency. It 

is a common practice to have the size of the largest 

element to be less than A/3[6]. In this paper the interest 

frequency of the acoustic radiation is less than 10,000 Hz,
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Fig니「e 2. 3D tuning fork dimensi이is. 티이"ents=550. Nodes그3934.

Table 1. Material properties.

Density (& 
[Kglne"]

Yo니ng's Modulus
(E) [N/m2]

Poisson Ratio
(摂

Air 1.22 1.411E5 -

Steel 7822.9 2.0684E11 0.30
Aluminum 2703.8 6.9637E10 0.36

so that /1/3 is about 11.3 nun.

Table 1 shows the material properties of the air, steel 

and aluminum. The first three natural frequencies were 

Cc lculated from the FEM equation (1) where {F)=0. In 

modal analysis {a} is an eigenvector and 人三(a/) is an 

eigenvalue.

= (10)

Fig. 3 shows the modal shape of the tuning fork at 128.4 

Hz (1st mode). The length and the width of the tuning fork 

are 152.4 [mm] and 25.4 [mm]. And the applied material 

is steel (4130). The green frame is the undeformed shape 

of the tuning fork while the solid color shows the Von 

Mises stress (Equation 11) with deformed shape.

Firiure 3. Modal shape of tuning fork (Color=Von Mises Stress) at 128.4 Hz (1st mode), L이‘igth더 52.4 [mm], Width二25.4 [mm], Material 
=Steel(4130)
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Figure 4. The first three modal frequencies as functions of tuning 
fork length.
Qrde=1st mo+de, Diamond=2nd mode, Rectangle=3rd mode.

V 0.5[ (4 - 6*)2  +(如-角)2 +(%-。1)勺 (11)

where 们，(y2, <j3 are stresses in x, y, z coordinates.

Then the change of the modal frequencies was calcu­

lated with the variation of the tuning fork length and

Table 2. Analytic기 model e디nations for each tuning fork mode, 
x [m].

1 어 Mode 2" Mode 3rd Mode

Model Eq니ations 2.0859 
『19

17,759 
卩62

21.040 
x1.77

s
°
으

」흔으
--5

Figure 5. Comparison in percentage [%] between FEM results and 
model equations.
Cir에e드俨 mode, Diamond=2nd mode, Rectangle=3rd mode.

width. Fig. 4 shows the first three modal frequencies as 

functions of tuning fork length with a constant width. Each 

symbol indicates different modal frequencies (Circle=lst 

mode, Diamond=2nd mode, Rectangle=3rd mode). Modal 

frequencies are exponentially increased with the reduced 

size of the tuning fork length.

A relationship for the natural frequencies-tuning fork 

length were derived from the numerical analysis results 

(Table 2). Solid continuous lines of Fig. 4 were drawn 

from the analytical model equations for each mode. And 

Fig. 5 shows the comparison in percentage [%] between 

FEM results and model equations. The most significant 
difference happened at the 3rd mode with 25.4 [mm] tuning 

fork length, that is, 44%. But the rest of the results show 

less than 8% differences.

Table 3 shows that the change of the tuning fork width 

does not significantly affect of the modal frequencies. Also 

Fig. 6 shows that the modal frequencies of the tuning fork 

remain almost the same as Fig. 4 though the material is 

changed from steel (continuous line) to aluminum (dashed 

line). These results show that the length of the tuning fork 

mainly affects the natural frequencies of the tuning fork 

as far as metallic materials are used.

Table 4 compares of modal frequencies between the

Table 3. Modal fre디uencies with different tuning fork width 
Length=152.4 [mm], Material=Ste이 (4130),

Width [mm]
Frequency [Hz]

1st mode 2nd mode 3rd mode
50.8 93.5 198.9 525.2
38.1 125.6 339.5 559.5
25.4 128.5 374.1 587.7
12.7 128.6 391.2 576.7
6.3 124.2 395.2 525.5

Table 4. Comparison of modal freq나encies between the present 
results and Algor results! 14]. Length=152.4 [mm], 
Width=25.4 [mm], Material二Ste이 (4130).

Results
F「eq니ency [Hz]

1st mode 2nd mode 3rd mode
Author's 128.5 374.1 587.7
Algor's 127.9 368.9 603.4

Difference 0.6 5.2 -15.4
% 0.5 1.4 27
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The fkslt three modal frequencies as functions of tuning fork length. wldth=25.4 [mm]

Length of Tuning Fork I mm]

Figure 6. The first three modal frequencies as functions of 
tuning fork length as Fig. 4.
Continuous Lines=Steel. Dashed Lines=Aluminum.

Figure 8. Acoustic pressure radiation pattern of Fig. 7.
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Fiijure 7. Acoustic pressure directivity pattern at 1 
Width=25.4 [mm], Materi기그Ste이 (4130).

[m] away from the tuning fork. At 128.4 Hz (1SI mode), L이igth느 1524 [mml,

present results and Algor results] 14]. The difference between 

two results slightly increased with higher modal frequency.

Finally the BEM was used for the sound pressure field 

calculation from the structural displacement data. From 

equation (9) the acoustic pressure in the near field is 

calculated along the circle with the directivity an읺e (P 

(F g. 7). The normalized value of the near field pressure 

is used as the quantitative degree of the directivity. Fig. 

7 shows the acoustic pressure directivity pattern at 1 [m] 

away from the tuning fork at 128.4 Hz (1st mode). Because 

the modal frequency is low, the directivity pattern is 

almost omni-directional. And Fig. 8 shows the acoustic 

pressure radiation pattern of Fig. 7[15].

IV. Conclusion

It is very meaningful to apply the BEM with the FEM 

to the tuning fork analysis because the mechanical behavior 

of the tuning fork may be numeric시ly predicted using the 

FEM-BEM techniques. Even though the structure of the 

tuning fork is simple and is well known, its numerical 
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analysis is surprisingly undone. The quantitative analysis 

of the tuning fork in this paper suggests further numerical 

research of mechanically sound generating devices. That 

is, the geometry of the tuning fork can be changed as far 

as different functionality is concerned such as acoustic 

pressure radiation pattern. It is concluded that the length 

of the tuning fork mainly affects the natural frequencies 

of the tuning fork as far as metallic materials are used. 

The width of the tuning fork does not much produce 

differences in modal frequencies. Numerically formulated 

table can be used as the designing factor of the tuning fork 

fabrication. The length of the tuning fork may be changed 

for a desired first modal frequency such as A pitch (=440 

Hz) etc. This work need to be further developed for a 

particular radiation pattern synthesis.
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