DOI QR코드

DOI QR Code

A Study on the Thermal Behaviors of Disk Brake and Pad by Friction Heat

디스크 브레이크와 패드의 마찰열에 의한 열적거동에 관한 연구

  • Received : 2019.10.30
  • Accepted : 2019.12.20
  • Published : 2019.12.28

Abstract

This paper analyzes the thermal behaviors of genuine discs used in automobiles and discs coming out of tuning products through FEM analysis. Modeling with genuine disk modeling and tuning disks Model-1, Model-2, Model-3 and analyzing the disk rotation speed was set to 1000rpm. When the brake is operated, the thermal behavior of the disk surface, such as the operating temperature caused by the disk and pad contact, the friction surface temperature after the disk stop, and the thermal deformation, were analyzed. When the brake was activated (0-4.5 seconds), the tuning disk showed 34℃ higher than the original disk, and after the disk stopped (40.5 seconds), the tuning disk was analyzed 18℃ lowe, deformation due to the disk heat was deformed by 0.3mm for the tuning disk. Although there is an effect to reduce the fading phenomenon due to the thermal behavior of the pure disk and the tuning disk, it can be observed that there is no significant change in the thermal behavior due to the hole processing and the disk surface processing of the tuning disk.

본 논문은 자동차 제동성능에 대한 운전자의 요구에 따라 브레이크 디스크 튜닝이 많이 이루어지고 있어, 자동차에 사용되고 있는 순정 디스크와 튜닝제품으로 나오고 있는 디스크의 열적거동을 FEM해석을 통해 분석하였다. 순정 디스크 모델링 및 튜닝 디스크 Model-1, Model-2, Model-3로 모델링을 하고 디스크 회전속도를 1000rpm으로 설정하여 해석을 실시하였다. 브레이크를 작동하면 디스크와 패드 접촉에 의해 발생하는 작동시 온도와 디스크 정지 후 마찰면의 온도, 열 변형 등 디스크 표면의 열적거동에 대하여 분석하였다. 브레이크 작동시(0-4.5초) 온도는 순정 디스크보다 튜닝 디스크가 34℃높게 나타났고, 디스크 정지 후(40.5초) 온도는 튜닝 디스크가 18℃낮게 분석되었으며, 디스크 열에 의한 변형은 튜닝 디스크가 0.3mm정도 많이 변형되었다. 순정 디스크와 튜닝 디스크의 열적거동에 따른 페이드 현상 등을 줄일 수 있는 효과는 있으나, 튜닝 디스크의 홀 가공 및 디스크 면 가공에 따른 열적거동에는 크게 변화가 없음을 관찰할 수 있었다.

Keywords

References

  1. M. S. Han & J. U. Cho. (2013). Durability Analysis by Shape of Brake Disk Structure. Journal of the Korean Society of Manufacturing Technology Engineers, 22(1), 36-44. https://doi.org/10.7735/ksmte.2013.22.1.36
  2. K. W. Park, J. H. Nam, J. Y. Kang, Y. S. Kim, J. B. Lee & B. J. Ryu. (2017). Investigation of Heat Fluid Analysis in Ventilated Disc Brake with Respect to Structure Geometry. Korean Society of Mechanical Technology, 19(1), 134-140.
  3. I. H, Baek. (2012). A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles. Journal of the KSTLE, 28(5), 246-251.
  4. J. W. Nam, H. S. Ryou & S. W. Cho. (2017). Study for Characteristic of Frictional Heat Transfer in Rotating Brake System. Journal of the Korea Academia-Industrial cooperation Society, 18(10), 817-822. https://doi.org/10.5762/KAIS.2017.18.10.817
  5. S. M. Kim. (2009). A Study on Thermal Analysis in Ventilated Disk Brake by FEM. Journal of the Korean Society of Machine Tool Engineers, 18(5), 544-549.
  6. J. B. Ma & B. G. Lee. (2014). Thermal Behavior of Ventilated Disc Brakes Considering Contact Between Disc and Pad. Journal of the Korean Society of Manufacturing Technology Engineers, 23(3), 259-265. https://doi.org/10.7735/ksmte.2014.23.3.259
  7. V. T. V. S. Ramachandra Rao, H. Ramasubrananian, and K. N. Seetharamu. (1989). Analysis of Temperature Field in Brake Disc for Fade Assessment. Wearme Stoffuebertrag, 24(1), 9-17. https://doi.org/10.1007/BF01599500
  8. T. I. Yeo. (1998). Finite Element Analysis of Thermoelastic Contact Stability with Sliding Friction. Trans. of the KSME(A), 22(7), 1106-1113.
  9. J. D. Rainbolt. (1975) Effects of Disk Material Selection on Disk Brake Rotor Configuration. SAE 750733, 1973-1814.
  10. A. E. Anderson & R. A. Knapp. (1989). Hot Spotting in Automotive Friction Systems. Int. Conf. on Wear of Materials, 2, 673-680.
  11. S. C. Han & B. G. Lee. (2018). A Study on Convergence Contact Behavior of Friction Heat and Pad on Disk Brake. Journal of the Korea Convergence Society, 9(1), 283-289. https://doi.org/10.15207/JKCS.2018.9.1.283
  12. Y. Jimbo, T. Mibe, K. Akiyama, H. Matsui, M. Yoshida & A. Ozawa. (1990). Development of High Thermal Conductivity Cast Iron for Brake Disk Rotors. SAE 750733, 22-28.
  13. M. S. Oh, B. G. Lee & J. B. Ma. (2014). Finite Element Analysis for Thermal Behavior of Ventilated Disc Brakes using Disk brake-Pad contact Mode. Journal of the Korean Society of Manufacturing Technology Engineers, 23(3), 259-265. https://doi.org/10.7735/ksmte.2014.23.3.259
  14. J. U. Cho & M. S. Han. (2010). Structural and Thermal Analysis of Disk Brake. Journal of the Korean Society of Manufacturing Technology Engineers, 19(2), 211-215.
  15. T. K. Jung, B. W. Cha, Y. H. Hong, C. M. Kim, Y. H. Hong & C. D. Cho. (2016). An Experimental Study for Machined Patterns of Friction Surface on Disc Brake Rotor in Performance Aspect. Transactions of KSAE, 24(4), 471-479. https://doi.org/10.7467/KSAE.2016.24.4.471
  16. S. P. Jung, T. W. Park & W. S. Chung. (2011). Analysis of Hot Judder of Disc Brakes for Automotives by Using Finite Element Method. Korean Society of Mechanical Engineers, 35(4), 425-431.