• Title/Summary/Keyword: FEM Model

Search Result 2,117, Processing Time 0.025 seconds

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.501-511
    • /
    • 2022
  • In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.

Finite Element Method for the Analysis of Deep Excavation in Urban Environment (도심지 굴착에 따른 토류구조물 및 인접지반의 유한요소 해석기법)

  • Lee, Bong-Ryeol;Kim, Gwang-Jin;Kim, Hak-Mun
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.35-44
    • /
    • 1997
  • A finite element computer program is developed for the specific analysis of earth retaining structures in urban excavation. Unlike the existing multi -purpose FEM programs, the newly developed program (EM) consists of very simple and easy data processing system for the urban excavation. A non-linear material model(GDHM, Generalized Decoupled Hyperbolic Models is deviloped and implemented in the program EM. The results of large scale model tests for earth retaining structures are used for the vertification of EM along whit GDHM, and the results were satisfactory, but it was found that the program EM needs minor modification for the improvement of its accuracy.

  • PDF

DYNAMIC MODELING AND REACTION WHEEL CONTROLLER DESIGN FOR FLEXIBLE SATELLITE AOCS (유연모드를 가진 인공위성의 자세제어를 위한 동역학 모델링 및 반작용휠 제어기 설계)

  • 우병삼;채장수
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.386-394
    • /
    • 1997
  • In this study, a few of the modeling methods for flexible spacecraft were introduced and adopted to the modeling of a 3-axes stabilization satellite. The generated model was put into pre-built rigid body attitude control loop. A Lumped Parameter Model(Global Mode Model: GMM) was recommended for the absence of the Finite Element Method(FEM) model. Finally, GMM was compared with FEM in terms of designing a control filter. A 1st-order filter was designed to meet requirements of the controller since the new flexible model was applied, and that filter was added to motor controller and axis controller. MATLAB/Simulink was used as a tool for design and simulation of the control loop and filter.

  • PDF

Development of Three Dimensional Chloride Ion Penetration Model Based on Finite Element Method (유한요소법을 이용한 3차원 염해 침투 예측 모델의 개발)

  • Choi, Won;Kim, Hanjoong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.43-49
    • /
    • 2015
  • Most of agricultural structures located in seashore could not avoid rapid deterioration of concrete because chloride-ion and $CO_2$ gradually penetrate into concrete. However, since most of models can be able to describe the phenomenon of penetration by using one or two dimensional models based on finite difference method (FDM), those modes can not simulate the real geometry and it takes a lot of computational time to complete even the calculation. To overcome those weaknesses, three dimensional numerical model considering time dependent variables such as surface concentration of chloride and diffusion coefficient of domain based on finite element method (FEM) was suggested. This model also included the neutralization occurred by the penetration of $CO_2$. Because the model used various sizes of tetrahedral mesh instead of equivalent rectangular mesh, it reduced the computational time to compare with FDM. As this model is based on FEM, it will be easily extended to execute multi-physics simulation including water evaporation and temperature change of concrete.

A FRF-based algorithm for damage detection using experimentally collected data

  • Garcia-Palencia, Antonio;Santini-Bell, Erin;Gul, Mustafa;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.399-418
    • /
    • 2015
  • Automated damage detection through Structural Health Monitoring (SHM) techniques has become an active area of research in the bridge engineering community but widespread implementation on in-service infrastructure still presents some challenges. In the meantime, visual inspection remains as the most common method for condition assessment even though collected information is highly subjective and certain types of damage can be overlooked by the inspector. In this article, a Frequency Response Functions-based model updating algorithm is evaluated using experimentally collected data from the University of Central Florida (UCF)-Benchmark Structure. A protocol for measurement selection and a regularization technique are presented in this work in order to provide the most well-conditioned model updating scenario for the target structure. The proposed technique is composed of two main stages. First, the initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference between the updated parameters from subsequent stages revealed both location and extent of damage in a "blind" scenario, without any previous information about type and location of damage.

A model experiment of damage detection for offshore jacket platforms based on partial measurement

  • Shi, Xiang;Li, Hua-Jun;Yang, Yong-Chun;Gong, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.311-325
    • /
    • 2008
  • Noting that damage occurrence of offshore jacket platforms is concentrated in two structural regions that are in the vicinity of still water surface and close to the seabed, a damage detection method by using only partial measurement of vibration in a suspect region was presented in this paper, which can not only locate damaged members but also evaluate damage severities. Then employing an experiment platform model under white-noise ground excitation by shaking table and using modal parameters of the first three modes identified by a scalar-type ARMA method on undamaged and damaged structures, the feasibility of the damage detection method was discussed. Modal parameters from eigenvalue analysis on the structural FEM model were also used to help the discussions. It is demonstrated that the damage detection algorithm is feasible on damage location and severity evaluation for broken slanted braces and it is robust against the errors of baseline FEM model to real structure when the principal errors is formed by difference of modal frequencies. It is also found that Z-value changes of modal shapes also play a role in the precise detection of damage.

Experimental and AI based FEM simulations for composite material in tested specimens of steel tube

  • Yahui Meng;Huakun Wu;ZY Chen;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.475-485
    • /
    • 2024
  • The mechanical behavior of the steel tube encased high-strength concrete (STHC) composite walls under constant axial load and cyclically increasing lateral load was studied. Conclusions are drawn based on experimental observations, grey evolutionary algorithm and finite element (FE) simulations. The use of steel tube wall panels improved the load capacity and ductility of the specimens. STHC composite walls withstand more load cycles and show more stable hysteresis performance than conventional high strength concrete (HSC) walls. After the maximum load, the bearing capacity of the STHC composite wall was gradually reduced, and the wall did not collapse under the influence of the steel pipe. For analysis of the bending capacity of STHC composite walls based on artificial intelligence tools, an analysis model is proposed that takes into account the limiting effect of steel pipes. The results of this model agree well with the test results, indicating that the model can be used to predict the bearing capacity of STHC composite walls. Based on a reasonable material constitutive model and the limiting effect of steel pipes, a finite element model of the STHC composite wall was created. The finite elements agree well with the experimental results in terms of hysteresis curve, load-deformation curve and peak load.

A study on the biomechanical modeling of human pharynx by using FEM(Finite Element Method) (유한요소기법에 의한 인두의 생체역학모델에 관한 연구)

  • Kim, Seong-Min;Kim, Nam-Hyeon
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.423-429
    • /
    • 1998
  • Human pharynx is unique, acting as a complex interchange between the oral cavity and esophagus, and between the nasal cavity and lungs. It is actively involved in the transport of food and liquid, producing the forces that guide that bolus into the upper esophagus and away from the adjacent larynx and lungs. This study intended to develop a biomechanical model of the human pharynx, utilizing Finite Element Method(FEM). Within each model changes in cross sectional intralumenal area were calculated and compared with the area from the computer-generated FE model. Area matching allowed estimation of intraluminal pressure gradients during swallow. The estimated pharyngeal pressure gradient varies from one region to another. The estimated pharyngeal pressure gradients showed different patterns for upper four levels and lower four levels. The contraction velocity for upper four levels is much higher than lower four levels. The higher contraction velocities and pressure gradients in the upper levels are consistent with the bolus velocities required for efficient swallow.

  • PDF

Analysis of Behavior of Metal Plate Connection by Nonlinear Finite Element Method (비선형 유한요소법을 이용한 메탈 플레이트 접합부의 거동해석)

  • Hyun, Jae-Hyuk;Kun, Gwang-Chul;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.23-30
    • /
    • 1999
  • have been many studies to analyze the behavior of metal plate connector that most widely used to connect light frame wood trusses. Finite element method{FEM) was one of the methods for those studies. FEM using linear model may well be applicable to predict the initial slope of load-displacement curve for metal plate connection. However, displacement may be overestimated above experimental results with the increase of load. Therefore, linear model cannot be used for the nonlinear behavior part. To predict real behavior more exactly, nonlinear term was included to FEM model in this study. It was found out that EA and AA mode showed the high agreement between predicted results and experimental ones. However, EE and AE mode showed a little difference between predicted results and experimental ones in nonlinear part. This results might be caused by insufficient reflection of the slip effect. Consequently, the effect of slip shall be considered to approve the accuracy of nonlinear analysis for the behavior of metal plate connection.

  • PDF

Experimental modal analysis of transverse-cracked rails-influence of the cracks on the real track behavior

  • Domingo, Laura Montalban;Giner, Beatriz Baydal;Martin, Clara Zamorano;Herraiz, Julia I. Real
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.1019-1032
    • /
    • 2014
  • Rails are key elements in railway superstructure since these elements receive directly the train load transmitted by the wheels. Simultaneously, rails must provide effective stress transference to the rest of the track elements. This track element often deteriorates as a consequence of the vehicle passing or manufacturing imperfections that cause in rail several defects. Among these rail defects, transverse cracks highlights and are considered a severe pathology because they can suddenly trigger the rail failure. This study is focused on UIC-60 rails with transverse cracks. A 3-D FEM model is developed in ANSYS for the flawless rail in which conditions simulating the crack presence are implemented. To account for the inertia loss of the rail as a consequence of the cracking, a reduction of the bending stiffness of the rail is considered. The numerical models have been calibrated using the first four bending vibration modes in terms of frequencies. These vibration frequencies have been obtained using the Experimental Modal Analysis technique, studying the changes in the modal parameters of the rails induced by the crack and comparing the results obtained by the model with experimental results. Finally, the calibrated and validated models for the single rail have been implemented in a complete railway ballasted track FEM model in order to study the static influence of the cracks on the rail deflection caused by a load passing.