DOI QR코드

DOI QR Code

Experimental modal analysis of transverse-cracked rails-influence of the cracks on the real track behavior

  • Domingo, Laura Montalban (Department of Transportation Engineering and Infrastructures, School of Civil Engineering, Polytechnic University of Valencia) ;
  • Giner, Beatriz Baydal (Department of Transportation Engineering and Infrastructures, School of Civil Engineering, Polytechnic University of Valencia) ;
  • Martin, Clara Zamorano (Foundation for the Research and Engineering in Railways) ;
  • Herraiz, Julia I. Real (Department of Transportation Engineering and Infrastructures, School of Civil Engineering, Polytechnic University of Valencia)
  • Received : 2014.06.20
  • Accepted : 2014.08.20
  • Published : 2014.12.10

Abstract

Rails are key elements in railway superstructure since these elements receive directly the train load transmitted by the wheels. Simultaneously, rails must provide effective stress transference to the rest of the track elements. This track element often deteriorates as a consequence of the vehicle passing or manufacturing imperfections that cause in rail several defects. Among these rail defects, transverse cracks highlights and are considered a severe pathology because they can suddenly trigger the rail failure. This study is focused on UIC-60 rails with transverse cracks. A 3-D FEM model is developed in ANSYS for the flawless rail in which conditions simulating the crack presence are implemented. To account for the inertia loss of the rail as a consequence of the cracking, a reduction of the bending stiffness of the rail is considered. The numerical models have been calibrated using the first four bending vibration modes in terms of frequencies. These vibration frequencies have been obtained using the Experimental Modal Analysis technique, studying the changes in the modal parameters of the rails induced by the crack and comparing the results obtained by the model with experimental results. Finally, the calibrated and validated models for the single rail have been implemented in a complete railway ballasted track FEM model in order to study the static influence of the cracks on the rail deflection caused by a load passing.

Keywords

References

  1. Acton, A.C. (2008), "Clusering results around peaks for full-harmonic analyses in ANSYS", ANSYS Incorporation.
  2. Allemang, R.J. and Brown, D.L. (1987), Experimental modal analysis and dynamic component synthesis, Air force wright aeronautical laboratories, EE. UU.
  3. Bartoli, I., Lanza di Scalea, F., Fateh, M. and Viola, E. (2005), "Modeling guided wave propagation with application to the long-range defect detection in railroad tracks", NDT Int., 38, 325-334. https://doi.org/10.1016/j.ndteint.2004.10.008
  4. Bovsunovsky, P. and Matveev, V.V. (2000), "Analytical aproach to the determination of dynamic characteristics of beam with a closing crack", J. Sound Vib., 235, 415-434. https://doi.org/10.1006/jsvi.2000.2930
  5. Carne, T., Todd, D. and Casias, M. (2007), "Support conditions for free boundary-condition modal testing", IMAC XXV, the 25th International Modal Analysis Conference, Orlando, FL, February.
  6. Chalko, T.J., Haritos, N. and Gershkovich, V. (1996), "Non-linear curve fitting for modal analysis", Environ. Softw., 11(1-3), 9-18. https://doi.org/10.1016/S0266-9838(96)00016-0
  7. Dirr, B.O. and Schmalhorst, B.K. (1988), "Crack depth analysis of a rotating shaft by vibration measurements", ASME J. Vib. Acosut., 110, 158-164. https://doi.org/10.1115/1.3269493
  8. Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Quart. Appl. Math., 10, 157-65. https://doi.org/10.1090/qam/48291
  9. Ewins, D.J. (2000), Modal testing: Theory and Practice, Research Studies Press, London, UK.
  10. Felix, D., Rossi, R. and Bambill, D. (2009), "Analisis de vibracion libre de una viga Timoshenko escalonada, centrifugamente rigidizada, mediante el metodo de la cuadradura diferencial", Revista Internacional de Metodos Numericos para Calculo y diseno en Ingenieria, 25, 111-132. (in Spanish)
  11. Gallego, I (2006), "Heterogenidad resisitente de las vias de alta velocidad: transicion terraplen-estructura", PhD Thesis, Universidad de Castilla-La Mancha, Ciudad Real. (in Spanish)
  12. Gallego, I. and Lopez, A. (2009) "Numerical simulation of embankment-structure transition design", J. Rail Rapid Tran., 223(4), 331-343. https://doi.org/10.1243/09544097JRRT234
  13. Gallego, I., Munoz, J., Rivas, A. and Sanchez-Cambronero, S. (2011) "Vertical track stiffness as a new parameter involved in designing high-speed railway infrastructure", J. Tran. Eng., 137, 971-979. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000288
  14. Giannakos, K. (2010), "Influence of rail pad stiffness on track stressing, life-cycle and noise emission. second international conference on sustainable construction materials and technologies", Special Technical Proceedings, Universita Politecnica delle Marche, Ancona, Italy, June.
  15. He, H. and Fu, Z. (2001), Modal Analysis, Great Britain Butterworth - Heinemann Publishers, Oxford, UK.
  16. IGP (2008), Instrucciones Generales para los Proyectos de la Plataforma, Spain. (in Spanish)
  17. Isernia-Trebols, D.J. and Rodriguez-Matienzo, J. (2011), "El modelado de una grieta de fatiga en una estructura plana y su deteccion mediante la transformada wavelet", Revista Ingenieria Mecanica, 14, 74-86. (in Spanish)
  18. Kaewunruen, S. and Reminnikov, A.M. (2008), "Dynamic effect on vibrations signatures of cracks in railway prestressed concrete sleepers", Adv. Mater. Res., 41-42, 233-239. https://doi.org/10.4028/www.scientific.net/AMR.41-42.233
  19. Kaland, A. and Rao, B.N. (2012), "Two-dimensional elastic-plastic cracked finite element for fracture applications", Indian J. Eng. Mater., 19, 95-106.
  20. Kennedy, C. and Pancu, C. (1947), "Use of vectors in vibration measurement and analysis", J. Aeronaut. Sci., 14(11), 603-625. https://doi.org/10.2514/8.1474
  21. Lanza di Scalea, F. and McNamara, J. (2004), "Measuring high-frequency wave propagation in railroad tracks by joint time-frequency analysis", J. Sound Vib., 273, 637-651. https://doi.org/10.1016/S0022-460X(03)00563-7
  22. Ministerio de fomento/Secretaria de estado de Infraestructuras y transportes (1999), Recomendaciones para el proyecto de plataformas ferroviarias, Centro de publicaciones, Spain. (in Spanish)
  23. Montalban, L., Real, J. and Real, T. (2012), "Mechanical characterization of railway structures based on vertical stiffness analysis and railway structures stress state", J. Rail Rapid Tran., 227(1), 74-85.
  24. Montalban, L., Zamorano, C., Palenzuela, C. and Real, J.I. (2014), "Finite element modelling of cracked railway pre-stressed concrete sleepers", Eur. J. Environ. Civil Eng., DOI 10.1080/19648189.2014.935486.
  25. Nahvi, H. and Jabbari, M. (2005), "Crack detection in beams using experimental modal data and finite element model", Int. J. Mech. Sci., 47, 1477-1497. https://doi.org/10.1016/j.ijmecsci.2005.06.008
  26. Ostachowicz, W.M. and Krawczuk, M. (1990), "Vibration analysis of a cracked beam", Comput. Struct., 36(2), 245-50 https://doi.org/10.1016/0045-7949(90)90123-J
  27. Profillidis, V. (1986), "Applications of finite element analysis in the rational design of track bed structures", Comput. Struct., 22(3), 439-443. https://doi.org/10.1016/0045-7949(86)90049-0
  28. Real, J.I., Sanchez ,M.E., Real, T., Sanchez, F.J. and Zamorano, C. (2012), "Experimental modal analysis of railway concrete sleepers with cracks", Struct. Eng. Mech., 44(1), 51-60. https://doi.org/10.12989/sem.2012.44.1.051
  29. Real, J.I., Gomez, L., Montalban, L. and Real, T. (2012), "Study of the influence of geometrical and mechanical parameters on ballasted railway tracks design", J. Mech. Sci. Techn., 26(9), 2837-2844. https://doi.org/10.1007/s12206-012-0734-7
  30. Remennikov, A.M. and Kaewunruen, S (2008), "A review on loading condition of railway track structures due to wheel and rail vertical interactions", Struct. Control Hlth. Monit., 15, 207-234. https://doi.org/10.1002/stc.227
  31. Ren, W.X. and Zong, Z.H. (2003), "Output-only modal parameter identification of civil engineering structures", Struct. Eng. Mech., 17(3-4), 429-444. https://doi.org/10.12989/sem.2004.17.3_4.429
  32. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  33. Salter, J.P. (1969), Steady State Vibration, Kenneth Mason Press.
  34. Shanin, M. (2008), "Investigation into some design aspects of ballasted railway track substructure. Conference on railway engineering", Earthworks and track bed construction for railway lines, UIC 719, International Union of Railways, Perth, September.
  35. Skrinar, M. (2009), "Elastic beam finite element with an arbitrary number of transverse cracks", Finit. Elem. Anal. Des., 45(3), 181-189. https://doi.org/10.1016/j.finel.2008.09.003
  36. Texeira, P.F. (2003), "Contribucion a la reduccion de los costes de mantenimiento de vias de alta velocidad mediante la optimizacion de la rigidez vertical", PhD Thesis, Universitat Politecnica de Catalunya, Barcelona. (in Spanish)
  37. Thompson, D. (1993), "Wheel-rail noise generation, Part III: rail vibration", J. Sound Vib., 161(3), 421-446 https://doi.org/10.1006/jsvi.1993.1084
  38. Thompson, D. (1997), "Experimental analysis of wave propagation in railway tracks", J. Sound Vib., 203(5), 867-888. https://doi.org/10.1006/jsvi.1997.0903
  39. Thompson, D. (2009), Railway Noise and Vibration: Mechanisms, Modelling and Means of Control, Elsevier, Oxford, UK.
  40. Wang, B.T. and Cheng, D.K. (2008), "Modal analysis of mdof system by using free vibration response data only", J. Sound Vib., 311(3-5), 737-55 https://doi.org/10.1016/j.jsv.2007.09.030
  41. Wolf, J.P. (1991a), "Consistent lumped-parameter models for unbounded soil: physical presentation", Earthq. Eng. Struct. Dyn., 20, 11-32. https://doi.org/10.1002/eqe.4290200103
  42. Wolf, J.P. (1991b), "Consistent lumped-parameter models for unbounded soil: frequency-independent stiffness, damping and mass matrices", Earthq. Eng. Struct. Dyn., 20, 33-41. https://doi.org/10.1002/eqe.4290200104
  43. Wolf, J.P. (1994), Foundation Vibration Using Simple Physical Models, PTR Prentice-Hall, Inc., New Jersey, U.S.A.
  44. Yoo, H.H., Cho, J.E. and Ching, J.T. (2006), "Modal analysis and shape optimization of rotating cantilever beams", J. Sound Vib., 290(1-2), 223-41. https://doi.org/10.1016/j.jsv.2005.03.014

Cited by

  1. Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.537
  2. On effects of rail fastener failure on vehicle/track interactions vol.63, pp.5, 2014, https://doi.org/10.12989/sem.2017.63.5.659