DOI QR코드

DOI QR Code

Experimental and AI based FEM simulations for composite material in tested specimens of steel tube

  • Yahui Meng (Guangdong University of Petrochemical Technology, School of Science) ;
  • Huakun Wu (School of Computer Science, Guangdong Polytechnic Normal University) ;
  • ZY Chen (Guangdong University of Petrochemical Technology, School of Science) ;
  • Timothy Chen (Division of Engineering and Applied Science, California Institute of Technology)
  • Received : 2024.05.30
  • Accepted : 2024.08.06
  • Published : 2024.08.25

Abstract

The mechanical behavior of the steel tube encased high-strength concrete (STHC) composite walls under constant axial load and cyclically increasing lateral load was studied. Conclusions are drawn based on experimental observations, grey evolutionary algorithm and finite element (FE) simulations. The use of steel tube wall panels improved the load capacity and ductility of the specimens. STHC composite walls withstand more load cycles and show more stable hysteresis performance than conventional high strength concrete (HSC) walls. After the maximum load, the bearing capacity of the STHC composite wall was gradually reduced, and the wall did not collapse under the influence of the steel pipe. For analysis of the bending capacity of STHC composite walls based on artificial intelligence tools, an analysis model is proposed that takes into account the limiting effect of steel pipes. The results of this model agree well with the test results, indicating that the model can be used to predict the bearing capacity of STHC composite walls. Based on a reasonable material constitutive model and the limiting effect of steel pipes, a finite element model of the STHC composite wall was created. The finite elements agree well with the experimental results in terms of hysteresis curve, load-deformation curve and peak load.

Keywords

References

  1. Bai, L., Zhang, C. and Xiong, E. (2019), "Investigations on the shear mechanism of steel tube rein forced concrete shear walls with a low shear span ratio", KSCE J. Civ. Eng., 23(7), 2983-2996. https://doi.org/10.1007/s12205-019-1170-3.
  2. Cao, J., Du, J., Zhang, H., He, H., Bao, C. and Liu, Y. (2024), "Mechanical properties of multi-bolted Glulam connection with slotted-in steel plates", Constr. Build. Mater., 433, 136608. https://doi.org/10.1016/j.conbuildmat.2024.136608.
  3. Cao, W., Wang, M. and Wang, S. (2008), "Seismic behavior research on composite shear wall with concrete filled steel tube columns in high axial-load ratio", Earthq. Eng. Eng. Vib., 28(1), 85-90. https://doi.org/10.13197/j.eeev.2008.02.015.
  4. Cao, W., Wang, M., Zhang J., Wang, S. and Zeng, B. (2008), "Seismic experiment and load-carrying capacity calculation of shear wall with concrete filled steel tube columns", J. B. Univ. Technol., 34(12), 1291-1297.
  5. Curkovic, I., Skejic, D. and Dz̆eba, I. (2019), "Seismic performance of composite plate shear walls with variable column flexural stiffness", Steel Comp. Struct., 33(1), 851-868. https://doi.org/10.12989/scs.2019.33.1.019.
  6. Dang, L., Pang, R., Liu, Y., Wang, Y., Wang, L. and Yang J. (2022), "Research on seismic performance of precast steel-concrete composite tube shear walls with horizontal joint", Eng. Struct., 250. https://doi.org/10.1016/j.engstruct.2021.113409.
  7. Fang, X., Li, Q., Wei, H., Zhou, Y., Jiang, Y. and Lai, H. (2013), "Experimental study on axial-flexural behavior of shear walls with steel tube-confined high performance concrete", J. Build. Eng., 34(8), 72-81. https://doi.org/10.14006/j.jzjgxb.2018.11.010.
  8. Gao, D., You, P., Zhang, L. and Yan H. (2018), "Seismic behavior of SFRC shear wall with CFST columns", Steel Comp. Struct., 28(5), 527-539. https://doi.org/10.12989/scs.2018.28.5.527.
  9. Gao, Q., Ding, Z. and Liao, W. (2022), "Effective elastic properties of irregular auxetic structures", Comp. Struct., 287, 115269. https://doi.org/10.1016/j.compstruct.2022.115269.
  10. GB 50010 (2010), Code for Design of Concrete Structures, China Ministry of Construction: Beijing; China.
  11. Guang, Y., Zhao, Zuozhou, Q.J. and Xu, L. (2014), "Experimental study on seismic behavior of a new type of concrete filled steel tube composite shear walls", Bldg., 44(7), 93-98. https://doi.org/10.19701/j.jzjg.2014.07.018.
  12. Han, L. (2016), Concrete Filled Steel Tubular Structures Theory and Practice, Science Press, Beijing, China.
  13. Han, L.H., Tao, Z. and Yao, G.H. (2008), "Behaviour of concrete-filled steel tubular members subjected to shear and constant axial compression", Thin Wall. Struct., 46(7), 765-780. https://doi.org/10.1016/j.tws.2008.01.026.
  14. Hou, H., Fu, W., Qiu, C., Cheng, J., Qu, Z., Zhu, W. and Ma, T. (2019), "Effect of axial compression ratio on concrete-filled steel tube composite shear wall", Adv. Struct., 22(3), 656-669. https://doi.org/10.1177/1369433218796407.
  15. Huang, C., Lai, Z., Wu, X. and Xu, T. (2022), "Multimodal locomotion and cargo transportation of magnetically actuated quadruped soft microrobots", Cyborg Bionic Syst., 2022, 0004. https://doi.org/10.34133/cbsystems.0004.
  16. Huang, F., Yu, X. and Chen, B. (2012), "The structural performance of axially loaded CFST columns under various loading conditions", Steel Comp. Struct., 13(5), 451-471. https://doi.org/10.12989/scs.2012.13.5.451.
  17. Huang, H., Guo, M., Zhang, W., Zeng, J., Yang, K. and Bai, H. (2021), "Numerical investigation on the bearing capacity of RC columns strengthened by HPFL-BSP under combined loadings", J. Build. Eng., 39, 102266. https://doi.org/10.1016/j.jobe.2021.102266.
  18. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastruct. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768.
  19. Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with BSP and HPFL under combined loadings", J. Struct. Eng., 146(8). https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
  20. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, 113479. https://doi.org/10.1016/j.engstruct.2021.113479.
  21. Huang, H., Yao, Y., Zhang, W. and Zhou, L. (2023), "A push-out test on partially encased composite column with different positions of shear studs", Eng. Struct., 289, 116343. https://doi.org/10.1016/j.engstruct.2023.116343.
  22. Huang, H., Yuan, Y., Zhang, W. and Li, M. (2021), "Seismic behavior of a replaceable artificial controllable plastic hinge for precast concrete beam-column joint", Eng. Struct., 245, 112848. https://doi.org/10.1016/j.engstruct.2021.112848.
  23. Ji, X., Sun, Y., Qian, J. and Lu, X. (2015), "Seismic behavior and modeling of steel reinforced concrete (SRC) walls", Earthq. Eng. Struct. D., 44, 955-72. https://doi.org/10.1002/eqe.2614.
  24. Li, X., Zhang, J. and Cao, W. (2020), "Hysteretic behavior of high-strength concrete shear walls with high-strength steel bars: Experimental study and modelling", Eng. Struct., 214, https://doi.org/10.1016/j.engstruct.2020.110600.
  25. Liang, W., Dong, J. and Wang, Q. (2018), "Axial compressive behavior of concrete-filled steel tube columns with stiffeners", Steel Comp. Struct., 29(2), 151-159. https://doi.org/10.12989/scs.2018.29.2.151.
  26. Liao, F.Y., Han, L.H. and Tao, Z. (2009), "Seismic behaviour of circular CFST columns and RC shear wall mixed structures: experiment", J. Constr. Steel Res., 65(8-9), 1582-96. https://doi.org/10.1016/j.jcsr.2009.04.023.
  27. Liu, H., Chen, J., Zhang, X., Dai, D., Cui, J. and Spencer, B.F. (2024), "Collaborative imaging of subsurface cavities using ground-pipeline penetrating radar", IEEE Geosci. Remote Sens. Lett., 21, 1-5. https://doi.org/10.1109/LGRS.2024.3390668.
  28. Liu, H., Yue, Y., Lian, Y., Meng, X., Du, Y. and Cui, J. (2024), "Reverse-time migration of GPR data for imaging cavities behind a reinforced shield tunnel", Tunn. Undergr. Sp. Tech., 146, 105649.
  29. Lu, D., Ma, C., Du Xiuli, Jin, L. and Gong, Q. (2017), "Development of a new nonlinear unified strength theory for geomaterials based on the characteristic stress concept", Int. J. Geomech., 17(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000729.
  30. Lu, D., Meng, F., Zhou, X., Zhuo, Y., Gao, Z. and Du Xiuli. (2023), "A dynamic elastoplastic model of concrete based on a modeling method with environmental factors as constitutive variables", J. Eng. Mech., 149(12). https://doi.org/10.1061/JENMDT.EMENG-7206.
  31. Luo, Y., Liao, P., Pan, R., Zou, J. and Zhou, X. (2024), "Effect of bar diameter on bond performance of helically ribbed GFRP bar to UHPC", J. Build. Eng., 91, 109577. https://doi.org/10.1016/j.jobe.2024.109577
  32. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), "Open sees command language manual", Pacific Earthq. Eng. Res. (PEER) Cent., 264(1), 137-158.
  33. Park, H. and Eom, T. (2007), "Truss model for nonlinear analysis of RC members subject to cyclic loading", J. Struct. Eng. 133(10), 1351-63. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:10(1351).
  34. Park, R. (1988), "State of the art report ductility evaluation from laboratory and analytical testing", Proceedings of Ninth World Conference on Earthquake Engineering, Tokyo, Kyoto, Japan, 605-616.
  35. Paulay, T. and Priestley, M.J.N. (1992), "Seismic design of reinforced concrete and masonry buildings", Wiley Interdiscip. Rev. Water., 30(04). https://doi.org/10.1002/9780470172841.
  36. Qian, J., Jiang, Z. and Ji, X. (2012), "Behavior of steel tube-reinforced concrete composite walls subjected to high axial force and cyclic loading", Eng. Struct., 36, 173-84. https://doi.org/10.1016/j.engstruct.2011.10.026.
  37. Qian, J., Wei, Y., Zhang, Z., Cai, Y., Yu, Y. and Shen, L. (2008), "Experimental study on seismic behavior of SRC shear walls with high axial force ratio", J. Build. Eng., 29(4), 43-50. https://doi.org/10.14006/j.jzjgxb.2008.02.008.
  38. Qin, Y., Chen, X., Xi, W., Zhu, X. and Chen, Y. (2020), "Behavior of L-shaped double-skin composite walls under compression and biaxial bending", Steel Comp. Struct., 37(4), 405-418. https://doi.org/10.12989/scs.2020.37.4.405.
  39. Shi, M., Hu, W., Li, M., Zhang, J., Song, X. and Sun, W. (2023), "Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine", Mech. Syst. Signal Pr., 188, 110022. https://doi.org/10.1016/j.ymssp.2022.110022.
  40. Su, F., He, X., Dai, M., Yang, J., Hamanaka, A., Yu, Y. and Li, J. (2023), "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions", Energ., 285, 129309. https://doi.org/10.1016/j.energy.2023.129309.
  41. Su, Y., Wang, J., Li, D., Wang, X., Hu, L., Yao, Y. and Kang, Y. (2023), "End-to-end deep learning model for underground utilities localization using GPR", Automat. Constr., 149, 104776. https://doi.org/10.1016/j.autcon.2023.104776.
  42. Tan, J., Zhang, K., Li, B. and Wu, A. (2023), "Event-triggered sliding mode control for spacecraft reorientation with multiple attitude constraints", IEEE Trans. Aerosp. Electron. Syst., 59(5), 6031-6043. https://doi.org/10.1109/TAES.2023.3270391.
  43. Taucer, F., Spacone, E. and Filippou, F.C. (1991), "A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures", Report UCB/EERC-91/17; University of California at Berkeley, Earthquake Engineering Research Center.
  44. Teng, S. and Chandra, J. (2016), "Cyclic shear behavior of high-strength concrete structural walls", ACI Struct. J., 113(6), 1335-1345. https://doi.org/10.14359/51689158.
  45. Tong, X., Hajjar, J.F., Schultz, A.E. and Shield, C.K. (2005), "Cyclic behavior of steel frame structures with composite reinforced concrete infill walls and partially restrained connections", J. Constr. Steel Res., 61, 531-52. https://doi.org/10.1016/j.jcsr.2004.10.002.
  46. Wan-Lin, C., Min, W. and Shao-He, W. (2008), "A seismic research of composite shear wall and core walls with rectangular concrete filled steel tube columns", Eng. Struct., 25, 58-70.
  47. Wang, L., Meng, L., Kang, R., Liu, B., Gu, S., Zhang, Z. and Ming, A. (2022), "Design and dynamic locomotion control of quadruped robot with perception-less terrain adaptation", Cyb. Bio. Syst., 2022. https://doi.org/10.34133/2022/9816495.
  48. Wang, R.Y., Chen, Z.Y., Jiang, R. and Chen, T. (2022), "NNDI decentralized evolved intelligent stabilization of large-scale systems", Smart Struct. Syst. Int. J., 30(1), 1-15. https://doi.org/10.12989/sss.2022.30.1.001.
  49. Wang, R.Y., Meng, Y., Chen, T. and Chen, Z.Y. (2022), "Intelligent algorithm and optimum design of fuzzy theory for structural control", Smart Struct. Syst. Int. J., 30(5), 537-544. https://doi.org/10.12989/sss.2022.30.5.537.
  50. Wei, J., Ying, H., Yang, Y., Zhang, W., Yuan, H. and Zhou, J. (2023), "Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates", Eng. Struct., 278, 115500. https://doi.org/10.1016/j.engstruct.2022.115500.
  51. Xu, G., Wang, Z., Wu, B., Bursi, O.S., Tan, X., Yang, Q. and Wen, L. (2017), "Seismic performance of precast shear wall withsleeves connection based on experimental and numericalstudies", Eng. Struct., 150, 346-58. https://doi.org/10.1016/j.engstruct.2017.06.026.
  52. Xu, X. and Wei, Z. (2023), "Dynamic pickup and delivery problem with transshipments and LIFO constraints", Comput. Ind. Eng., 175, 108835. https://doi.org/10.1016/j.cie.2022.108835.
  53. Xu, X., Lin, Z., Li, X., Shang, C. and Shen, Q. (2022), "Multi-objective robust optimisation model for MDVRPLS in refined oil distribution", Int. J. Produc. Res., 60(22), 6772-6792. https://doi.org/10.1080/00207543.2021.1887534.
  54. Younas, S., Li, D., Hamed, E. and Uy, B. (2021), "Behaviour of high strength concrete-filled short steel tubes under sustainedloading", Steel Comp. Struct., 39(2), 159-170.
  55. Zhang, J. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.
  56. Zhang, J., Li, X., Yu, C. and Cao, W. (2021), "Cyclic behavior of high-strength concrete shear walls with high-strength reinforcements and boundary CFST columns", J. Constr. Steel Res., 182(4). https://doi.org/10.1016/j.jcsr.2021.106692.
  57. Zhang, J., Li, Y. and Zhang, C. (2024), "Pounding induced overturning resistance of FPB-isolated structures considering soil-structure-interactions", Soil Dyn. Earthq. Eng., 177, 108416. https://doi.org/10.1016/j.soildyn.2023.108416.
  58. Zhang, S., Li, F., Fu, R., Li, H., Zou, S., Ma, N. and Li, J. (2023), "A versatile continuum gripping robot with a concealable gripper", Cyb. Bio. Syst., 4. https://doi.org/10.34133/cbsystems.0003.
  59. Zhang, Z., Chen, J., Wang, J., Han, Y., Yu, Z., Wang, Q. and Yang, S. (2022), "Effects of solder thickness on interface behavior and nanoindentation characteristics in Cu/Sn/Cu microbumps", Weld. World, 66(5), 973-983. https://doi.org/10.1007/s40194-022-01261-0.
  60. Zhao, N., Wang, Y., Han, Q. and Su, H. (2020), "Bearing capacity of composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall", Adv. Struct., 23(10), 2188-2203. https://doi.org/10.1177/1369433220911156.
  61. Zhou, J., Fang, X. and Yao, Z. (2018), "Mechanical behavior of a steel tube-confined high-strength concrete shear wall under combined tensile and shear loading", Eng. Struct., 171, 673-85. https://doi.org/10.1016/j.engstruct.2018.06.024.
  62. Zhou, P., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Path planning with automatic seam extraction over point cloud models for robotic arc welding", IEEE Robot. Automat. Lett., 6(3), 5002-5009. https://doi.org/10.1109/LRA.2021.3070828.
  63. Zhou, X., Lu, D., Du, X., Wang, G. and Meng, F. (2020), "A 3D non-orthogonal plastic damage model for concrete", Comput. Method. Appl. Mech. Eng., 360, 112716. https://doi.org/10.1016/j.cma.2019.112716.
  64. Zhu, Q., Chen, J., Gou, G., Chen, H. and Li, P. (2017), "Ameliorated longitudinal critically refracted-Attenuation velocity method for welding residual stress measurement", J. Mater. Process. Tech., 246, 267-275. https://doi.org/10.1016/j.jmatprotec.2017.03.022.
  65. Zhu, X., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Application of GIS for the determination of hazard hotspots after direct transportation linkages between Taiwan and China", Nat. Hazard., 66, 191-228. https://doi.org/10.1007/s11069-012-0402-3.
  66. Zhu, X., Peng, R., Xu, M., Wu, V. and Navarro-Alarcon, D. (2021), "Collaborative imaging of subsurface cavities using ground-pipeline penetrating radar", Nonlin. Dyn., 76, 23-31. https://doi.org/10.1007/s11071-013-0869-9.