• Title/Summary/Keyword: FEEDBACK

Search Result 9,717, Processing Time 0.039 seconds

Novel Protocol Design for Multi-Subband Feedback-Based Multicast Services in LTE Systems (LTE 시스템에서 다중 부대역을 이용한 피드백 기반의 멀티캐스트 서비스를 위한 새로운 프로토콜 설계)

  • Sohn, Kyungho;Kim, Young Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.386-388
    • /
    • 2017
  • In this paper, we propose a novel protocol design for multi-subband feedback-based multicast services in LTE systems, which reduces feedback overheads with guaranteeing QoS. Through the experimental results, it is manifested that the proposed protocol is able to reduce more feedback overheads in comparison with the conventional scheme.

Improved Image Feedback Scheme for the Control of Telerobotics Equipment

  • Lee, Jong-Kwang;Kim, Byeong-Nyeon;Kang, E-Sok;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.116.5-116
    • /
    • 2002
  • In remote control of telerobotics equipment, the real-time visual feedback is necessary in order to facilitate real-time control. Because of the network congestion and the associated delays, the real-time image feedback is generally difficult in the public networks like internet. If the remote user is not able to receive the image feedback within a certain time, the work performance may tend to decrease, and it makes difficulties to control of the telerobotics equipment. In this paper, we propose an improved visual feedback scheme over the internet for telerobotics system. The size of a remote site image and its quality are adjusted for efficient transmission. The constructed system has a be...

  • PDF

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF

Feedback linearization of the electro-hydraulic velocity control system (전기유압 속도제어 시스템의 귀환 선형화 제어)

  • 김영준;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1116-1121
    • /
    • 1991
  • In this paper the feedback linearization of the valve-controlled nonlinear hydraulic velocity control system and the Implementation of the digital state feedback controller is studied. The C.inf. nonlinear transformation to the electro-hydraulic velocity control system, which transforms nonlinear system to linear equivalent one, is obtained. It is shown that this transformation Is global one. The digital controller to this linearized model is obtained by using the one-step ahead state estimator and implemented to real plant. The proposed method In this paper is easier to implement than other proposed methods and it is possible to control in real tine. The experiment and simulation study show that the implementation of the digital state feedback controller based on the feedback linearized model is successful.

  • PDF

Novel Equalization On-Channel Repeater with Feedback Interference Canceller in Terrestrial Digital Multimedia Broadcasting System

  • Park, Sung-Ik;Eum, Ho-Min;Park, So-Ra;Kim, Geon;Lee, Yong-Tae;Kim, Heung-Mook;Oh, Wang-Rok
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.357-364
    • /
    • 2009
  • In this paper, we propose a novel equalization on-channel repeater (OCR) with a feedback interference canceller (FIC) to relay terrestrial digital multimedia broadcasting signals in single frequency networks. The proposed OCR not only has high output power by cancelling the feedback signals caused by insufficient antenna isolation through the FIC, but also shows better output signal quality than the conventional OCR by removing multipath signals existing between the main transmitter and the OCR through an equalizer. In addition, computer simulations and laboratory test results demonstrate that the proposed OCR successfully cancels feedback signals and compensates channel distortions and provides a higher quality transmitting signal with higher output power than conventional OCRs.

AN IMMERSED BOUNDARY METHOD WITH FEEDBACK FORCING FOR SIMULATION OF FLOW AROUND AN ARBITRARILY MOVING BODY (임의로 움직이는 물체 주위의 유동 해석을 위한 피드백 강제 외력을 이용한 가상경계방법)

  • Shin, S.J.;Huang, W.X.;Sung, H.J.
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.14-20
    • /
    • 2007
  • We present an improved immersed boundary method for computing incompressible viscous flow around an arbitrarily moving body on a fixed computational grid. The main idea is to incorporate feedback forcing scheme of virtual boundary method with Peskin's regularized delta function approach in order to use large CFL number and transfer quantities between Eulerian and Lagrangian domain effectively. From the analysis of stability limits and effects of feedback forcing gains, optimum regions of the feedback forcing are suggested.

A Second-Order Iterative Learning Algorithm with Feedback Applicable to Nonlinear Systems (비선형 시스템에 적용가능한 피드백 사용형 2차 반복 학습제어 알고리즘)

  • 허경무;우광준
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.608-615
    • /
    • 1998
  • In this paper a second-order iterative learning control algorithm with feedback is proposed for the trajectory-tracking control of nonlinear dynamic systems with unidentified parameters. In contrast to other known methods, the proposed teaming control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a feedback term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances or system parameter variations. The convergence proof of the proposed algorithm is given in detail, and the sufficient condition for the convergence of the algorithm is provided. We also discuss the convergence performance of the algorithm when the initial condition at the beginning of each iteration differs from the previous value of the initial condition. The effectiveness of the proposed algorithm is shown by computer simulation result. It is shown that, by adding a feedback term in teaming control algorithm, convergence speed, robustness to disturbances and robustness to unmatched initial conditions can be improved.

  • PDF

Robust and Non-fragile $H^{i~}$ State Feedback Controller Design for Time Delay Systems

  • Cho, Sang-Hyun;Kim, Ki-Tae;Park, Hong-Bae
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • This paper describes the synthesis of robust and non-fragile $H^{i~}$state feedback controllers for linear varying systems with time delay and affine parameter uncertainties, as well as static state feedback controller with structural uncertainty. The sufficient condition of controller existence, the design method of robust and non-fragile $H^{i~}$static state feedback controller, and the region of controllers satisfying non-fragility are presented. Also, using some change of variables and Schur complements, the obtained conditions can be rewritten as parameterized Linear Matrix Inequalities (PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting controller guarantees the asymptotic stability and disturbance attenuation of the closed loop system in spite of time delay and controller gain variations within a resulted polytopic region.

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

Output Feedback Stabilization of Non-Minimum phase Nonlinear Systems (비최소위상 비선형 시스템의 출력궤환 안정화)

  • 조남훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.977-983
    • /
    • 2003
  • An output feedback stabilizing controller far non-minimum phase nonlinear systems is presented. We first perform the standard input-output linearization of the system and then transform the zero dynamics into a special normal form in which the antistable part is not affected by the stable part and the antistable part is given in approximately linear form. Under the assumption that the nonlinear system satisfies the observability rank condition, we can design an observer f3r the extended system that is made of the augmentation of a chain of integrators. The proposed output feedback stabilizing controller can then be designed by combining the observer and the state feedback controller.