• Title/Summary/Keyword: F.E.A.

Search Result 4,616, Processing Time 0.03 seconds

NEIGHBORHOOD CONDITION AND FRACTIONAL f-FACTORS IN GRAPHS

  • Liu, Hongxia;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1157-1163
    • /
    • 2009
  • Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called a fractional f-factor if $d^h_G$(x)=f(x) for all x $\in$ for all x $\in$ V (G), where $d^h_G$ (x) = ${\Sigma}_{e{\in}E_x}$ h(e) is the fractional degree of x $\in$ V(F) with $E_x$ = {e : e = xy $\in$ E|G|}. In this paper it is proved that if ${\delta}(G){\geq}{\frac{b^2(k-1)}{a}},\;n>\frac{(a+b)(k(a+b)-2)}{a}$ and $|N_G(x_1){\cup}N_G(x_2){\cup}{\cdots}{\cup}N_G(x_k)|{\geq}\frac{bn}{a+b}$ for any independent subset ${x_1,x_2,...,x_k}$ of V(G), then G has a fractional f-factor. Where k $\geq$ 2 be a positive integer not larger than the independence number of G, a and b are integers such that 1 $\leq$ a $\leq$ f(x) $\leq$ b for every x $\in$ V(G). Furthermore, we show that the result is best possible in some sense.

  • PDF

AN ACTION OF A GALOIS GROUP ON A TENSOR PRODUCT

  • Hwang, Yoon-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.645-648
    • /
    • 2005
  • Let K be a Galois extension of a field F with G = Gal(K/F). Let L be an extension of F such that $K\;{\otimes}_F\;L\;=\; N_1\;{\oplus}N_2\;{\oplus}{\cdots}{\oplus}N_k$ with corresponding primitive idempotents $e_1,\;e_2,{\cdots},e_k$, where Ni's are fields. Then G acts on $\{e_1,\;e_2,{\cdots},e_k\}$ transitively and $Gal(N_1/K)\;{\cong}\;\{\sigma\;{\in}\;G\;/\;{\sigma}(e_1)\;=\;e_1\}$. And, let R be a commutative F-algebra, and let P be a prime ideal of R. Let T = $K\;{\otimes}_F\;R$, and suppose there are only finitely many prime ideals $Q_1,\;Q_2,{\cdots},Q_k$ of T with $Q_i\;{\cap}\;R\;=\;P$. Then G acts transitively on $\{Q_1,\;Q_2,{\cdots},Q_k\},\;and\;Gal(qf(T/Q_1)/qf(R/P))\;{\cong}\;\{\sigma{\in}\;G/\;{\sigma}-(Q_1)\;=\;Q_1\}$ where qf($T/Q_1$) is the quotient field of $T/Q_1$.

Odd Harmonious and Strongly Odd Harmonious Graphs

  • Seoud, Mohamed Abdel-Azim;Hafez, Hamdy Mohamed
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.4
    • /
    • pp.747-759
    • /
    • 2018
  • A graph G = (V (G), E(G) of order n = |V (G)| and size m = |E(G)| is said to be odd harmonious if there exists an injection $f:V(G){\rightarrow}\{0,\;1,\;2,\;{\ldots},\;2m-1\}$ such that the induced function $f^*:E(G){\rightarrow}\{1,\;3,\;5,\;{\ldots},\;2m-1\}$ defined by $f^*(uv)=f(u)+f(v)$ is bijection. While a bipartite graph G with partite sets A and B is said to be bigraceful if there exist a pair of injective functions $f_A:A{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ and $f_B:B{\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ such that the induced labeling on the edges $f_{E(G)}:E(G){\rightarrow}\{0,\;1,\;{\ldots},\;m-1\}$ defined by $f_{E(G)}(uv)=f_A(u)-f_B(v)$ (with respect to the ordered partition (A, B)), is also injective. In this paper we prove that odd harmonious graphs and bigraceful graphs are equivalent. We also prove that the number of distinct odd harmonious labeled graphs on m edges is m! and the number of distinct strongly odd harmonious labeled graphs on m edges is [m/2]![m/2]!. We prove that the Cartesian product of strongly odd harmonious trees is strongly odd harmonious. We find some new disconnected odd harmonious graphs.

A Variable Latency Goldschmidt's Floating Point Number Divider (가변 시간 골드스미트 부동소수점 나눗셈기)

  • Kim Sung-Gi;Song Hong-Bok;Cho Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.380-389
    • /
    • 2005
  • The Goldschmidt iterative algorithm for a floating point divide calculates it by performing a fixed number of multiplications. In this paper, a variable latency Goldschmidt's divide algorithm is proposed, that performs multiplications a variable number of times until the error becomes smaller than a given value. To calculate a floating point divide '$\frac{N}{F}$', multifly '$T=\frac{1}{F}+e_t$' to the denominator and the nominator, then it becomes ’$\frac{TN}{TF}=\frac{N_0}{F_0}$'. And the algorithm repeats the following operations: ’$R_i=(2-e_r-F_i),\;N_{i+1}=N_i{\ast}R_i,\;F_{i+1}=F_i{\ast}R_i$, i$\in${0,1,...n-1}'. The bits to the right of p fractional bits in intermediate multiplication results are truncated, and this truncation error is less than ‘$e_r=2^{-p}$'. The value of p is 29 for the single precision floating point, and 59 for the double precision floating point. Let ’$F_i=1+e_i$', there is $F_{i+1}=1-e_{i+1},\;e_{i+1}',\;where\;e_{i+1}, If '$[F_i-1]<2^{\frac{-p+3}{2}}$ is true, ’$e_{i+1}<16e_r$' is less than the smallest number which is representable by floating point number. So, ‘$N_{i+1}$ is approximate to ‘$\frac{N}{F}$'. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation is derived from many reciprocal tables ($T=\frac{1}{F}+e_t$) with varying sizes. 1'he superiority of this algorithm is proved by comparing this average number with the fixed number of multiplications of the conventional algorithm. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a divider. Also, it can be used to construct optimized approximate reciprocal tables. The results of this paper can be applied to many areas that utilize floating point numbers, such as digital signal processing, computer graphics, multimedia, scientific computing, etc

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

A NOTE ON ITO PROCESSES

  • Park, Won
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.731-737
    • /
    • 1994
  • Let $(\Omega, F, P)$ be a probability space with F a $\sigma$-algebra of subsets of the measure space $\Omega$ and P a probability measures on $\Omega$. Suppose $a > 0$ and let $(F_t)_{t \in [0,a]}$ be an increasing family of sub-$\sigma$- algebras of F. If $r > 0$, let $J = [-r, 0]$ and $C(J, R^n)$ the Banach space of all continuous paths $\gamma : J \to R^n$ with the sup-norm $\Vert \gamma \Vert_C = sup_{s \in J} $\mid$\gamma(x)$\mid$$ where $$\mid$\cdot$\mid$$ denotes the Euclidean norm on $R^n$. Let E and F be separable real Banach spaces and L(E,F) be the Banach space of all continuous linear maps $T : E \to F$ with the norm $\Vert T \Vert = sup {$\mid$T(x)$\mid$_F : x \in E, $\mid$x$\mid$_E \leq 1}$.

  • PDF

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

NOTES ON A NON-ASSOCIATIVE ALGEBRA WITH EXPONENTIAL FUNCTIONS II

  • Choi, Seul-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.241-246
    • /
    • 2007
  • For the evaluation algebra $F[e^{{\pm}x}]_M\;if\;M=\{{\partial}\}$, then $$Der_{non}(F[e^{{\pm}x}]_M)$$ of the evaluation algebra $(F[e^{{\pm}x}]_M)$ is found in the paper [15]. For $M=\{{\partial},\;{\partial}^2\}$, we find $Der_{non}(F[e^{{\pm}x}]_M))$ of the evaluation algebra $F[e^{{\pm}x}]_M$ in this paper. We show that there is a non-associative algebra which is the direct sum of derivation invariant subspaces.

A Study on the Visual Effects According to the Lines in Cloth Designing (의복 디자인 선에 따른 시각적 효과에 관한 연구)

  • 이경희
    • Journal of the Korean Home Economics Association
    • /
    • v.28 no.4
    • /
    • pp.1.1-13
    • /
    • 1990
  • Authors have performed the sensory evaluation tests according to each given items after selecting various lines in order to assess the visual effects by the lines in cloth designing. The evaluations were done by means of ranking tests followed by paired comparison tests. The results obtained were as follows : 1. In the item in than "Shoulder width looks wide", the design C3 showed the best visual effect, and then B1, F8, and A5 comes in order. In "Shoulder width looks narrow", they were A2, F5, F7, and B2 in order. 2. In "Bust looks big", the effect was best in F9, and then B1, F5, C3, and A5 and order. "Bust looks small" item showed A3, C1, and F1 in order. 3. In "Waist looks thick", they were B2, D1, and F7 while in "Waist looks thin", they were B3, F8, and D6 in order. 4. In the item in that "Hip looks big", the best effect was in F9, and then E3, C2, and B4 in order. In "Hip looks small", the best one was C1, and then comes. E1, F6, and F8. 5. In "Upper body looks thick", they were D2, D4, F8, C3 and A5 in order whild in "Upper body looks thin", they were A1, F5, and D7 in order. 6. In the item "Lower body lookds thick", they were F9, C2, E3, B3, and D3 in order. In "Lower body looks thin", the best one was C1, and then D1, E2, F6, and F8 comes in order. 7. In "whole body looks thick", they were F9, F3, D3, and A5, and in "Whole body looks thin", they were F5, A1, C1, and D6 in order. 8. In "Height looks tall", the effects were in order of A4, D6, E1, and F7 while in "Height looks short", they were E3, F9, B4, D2, and D1. 8. In "Height looks tall", the effects were in order of A4, D6, E1, and F7 while in "Height looks short", they were E3, F9, B4, D2, and D1. F9, B4, D2, and D1.

  • PDF

The Notch Effects on the Fatigue fracture Behaviour of Ferrite-Martensite Dual Phase Steel (페라이트-마르텐사이트 이상조직강의 피로파괴거동에 미치는 노치효과)

  • 도영민
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.3
    • /
    • pp.46-53
    • /
    • 2003
  • For the tensile tests of the F.E.M., microvoids are created by the boundary separation process at the martensite boundary or neighborhood and at inclusions within the fracture. to grow to the ductile dimple fracture. For the case of the M.E.F., microvoids created at the discontinuities of the martensite phase which exists at the grain boundary of the primary ferrite are grown to coalescence with the cleavage cracks induced at the interior of the ferrite, which as a result show the discontinuous brittle fracture behavior. In spite of their similar tensile strengths, the fatigue limit and the notch sensitivity of the M. E.F. is superior to those of the F.E.M., The M.E.F. is much more insensitive to notch than F.E.M. from the stress concentration factor($\alpha$).