• Title/Summary/Keyword: F-pure

Search Result 586, Processing Time 0.023 seconds

ADDITIVE ρ-FUNCTIONAL INEQUALITIES

  • LEE, SUNG JIN;LEE, JUNG RYE;SEO, JEONG PIL
    • The Pure and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.155-162
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1)${\parallel}f(x+y)+f(x-y)-2f(x){\parallel}$ $\leq$ ${\parallel}{\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ${\parallel}2f(\frac{x+y}{2})+f(x-y)-2f(x)){\parallel}$ $\leq$ ${\parallel}{\rho}f(x+y)+f(x-y)-2f(x){\parallel}$, where ρ is a fixed complex number with |ρ| < 1. Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

A NOTE ON QUASI-OPEN MAPS

  • Kim, Jae-Woon
    • The Pure and Applied Mathematics
    • /
    • v.5 no.1
    • /
    • pp.1-3
    • /
    • 1998
  • Let f : X longrightarrow Y be quasi-open. We show that: (1) If A $\subset$ X is open, f│A is quasi-open, (2) f : X longrightarrow f(X) is quasi-open. (3) And let $f_{\alpha}/,:X_{\alpha}$, longrightarrow $Y_{\alpha}$ be quasi-open. Then $\Pi f_{\alpha}, : \Pi X_{\alpha}$ longrightarrow $\Pi Y_{\alpha}$/ defined by {$x_{\alpha}$} longrightarrow {$f_{\alpha},({\chi}_{\alpha}$)}, is quasi-open. (4) Lastly, if $f_{i}: X_{i}$ longrightarrow Y are quasi-open, i = 1,2, then F: $X_1 \bigoplus X_2$ longrightarrow Y, defined by $F({\chi})=f_i({\chi})$, ${\chi} \in X_i$, is also quasi-open.

  • PDF

ON AN ADDITIVE FUNCTIONAL INEQUALITY IN NORMED MODULES OVER A $C^*$-ALGEBRA

  • An, Jong-Su
    • The Pure and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.393-400
    • /
    • 2008
  • In this paper, we investigate the following additive functional inequality (0.1) ||f(x)+f(y)+f(z)+f(w)||${\leq}$||f(x+y)+f(z+w)|| in normed modules over a $C^*$-algebra. This is applied to understand homomor-phisms in $C^*$-algebra. Moreover, we prove the generalized Hyers-Ulam stability of the functional inequality (0.2) ||f(x)+f(y)+f(z)f(w)||${\leq}$||f(x+y+z+w)||+${\theta}||x||^p||y||^p||z||^p||w||^p$ in real Banach spaces, where ${\theta}$, p are positive real numbers with $4p{\neq}1$.

  • PDF

The Effect of Pressure on the Phase Transformation in Fe-Ni-C Alloy and Pure Metals (Fe-Ni-C합금과 저융점 순금속의 상변태에 미치는 압력의 영향)

  • An, Haeng-Geun;Kim, Hak-Sin
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.392-397
    • /
    • 2000
  • The effect of pressure on the phase transformation in Fe-30Ni-0.35C Alloy and pure metals was investigated by using PDSC(pressure differential scanning calorimeter). As the pressure increased from 1 atm to 60 atm, the $A_s$points of the ausformed martensite and the marformed martensite in Fe-30Ni-0.35C Alloy were lowered about $2~4^{\circ}C$ at reverse transformation. This is why the volume change came down at phase transition(from martensite to autenite). As the pressure increased from 1 atm to 60 atm, $A_f$ points were constant or slightly increased. This is due to the promotion of carbide precipitation with increasing pressure. The enthalpy change of the ausformed martensite in Fe-30Ni-0.35C Alloy was increased by 10~14J/g. The melting points of the pure metals, Se, Sn, Pb, Zn and Te were slightly increased with increasing pressure. The enthalpy changes of the pure metals at melting were little changed or slightly increased with increasing pressure.

  • PDF

ON THE SOLUTION OF A MULTI-VARIABLE BI-ADDITIVE FUNCTIONAL EQUATION I

  • Park, Won-Gil;Bae, Jae-Hyeong
    • The Pure and Applied Mathematics
    • /
    • v.13 no.4 s.34
    • /
    • pp.295-301
    • /
    • 2006
  • We Investigate the relation between the multi-variable bi-additive functional equation f(x+y+z,u+v+w)=f(x,u)+f(x,v)+f(x,w)+f(y,u)+f(y,v)+f(y,w)+f(z,u)+f(z,v)+f(z,w) and the multi-variable quadratic functional equation g(x+y+z)+g(x-y+z)+g(x+y-z)+g(-x+y+z)=4g(x)+4g(y)+4g(z). Furthermore, we find out the general solution of the above two functional equations.

  • PDF

HYERS-ULAM STABILITY OF AN ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN BANACH SPACES

  • Park, Choonkil;Yun, Sungsik
    • The Pure and Applied Mathematics
    • /
    • v.25 no.2
    • /
    • pp.161-170
    • /
    • 2018
  • In this paper, we introduce and solve the following additive (${\rho}_1,{\rho}_2$)-functional inequality (0.1) $${\parallel}f(x+y+z)-f(x)-f(y)-f(z){\parallel}{\leq}{\parallel}{\rho}_1(f(x+z)-f(x)-f(z)){\parallel}+{\parallel}{\rho}_2(f(y+z)-f(y)-f(z)){\parallel}$$, where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero complex numbers with ${\mid}{\rho}_1{\mid}+{\mid}{\rho}_2{\mid}$ < 2. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the additive (${\rho}_1,{\rho}_2$)-functional inequality (0.1) in complex Banach spaces.

ZERO DISTRIBUTION OF SOME DELAY-DIFFERENTIAL POLYNOMIALS

  • Laine, Ilpo;Latreuch, Zinelaabidine
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1541-1565
    • /
    • 2020
  • Let f be a meromorphic function of finite order ρ with few poles in the sense Sλ(r, f) := O(rλ+ε) + S(r, f), where λ < ρ and ε ∈ (0, ρ - λ), and let g(f) := Σkj=1bj(z)f(kj)(z + cj) be a linear delay-differential polynomial of f with small meromorphic coefficients bj in the sense Sλ(r, f). The zero distribution of fn(g(f))s - b0 is considered in this paper, where b0 is a small function in the sense Sλ(r, f).

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

  • Xinmei Liu;Junfan Chen
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that λ(f - a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) < 1, and let 𝜂(∈ ℂ) be a constant such that ∆𝜂n+1 f(z) ≢ 0. If ∆𝜂n+1 f(z) and ∆𝜂n f(z) share ∆𝜂n a(z) CM, where ∆𝜂n a(z) ∈ S ∆𝜂n+1 f(z), then f(z) has a specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants and a(z) reduces to a constant.

STABILITY OF AN ADDITIVE (ρ1, ρ2)-FUNCTIONAL INEQUALITY IN BANACH SPACES

  • Yun, Sungsik;Shin, Dong Yun
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • In this paper, we introduce and solve the following additive (${\rho}_1$, ${\rho}_2$)-functional inequality $${\Large{\parallel}}2f(\frac{x+y}{2})-f(x)-f(y){\Large{\parallel}}{\leq}{\parallel}{\rho}_1(f(x+y)+f(x-y)-2f(x)){\parallel}+{\parallel}{\rho}_2(f(x+y)-f(x)-f(y)){\parallel}$$ where ${\rho}_1$ and ${\rho}_2$ are fixed nonzero complex numbers with $\sqrt{2}{\mid}{\rho}_1{\mid}+{\mid}{\rho}_2{\mid}<1$. Using the fixed point method and the direct method, we prove the Hyers-Ulam stability of the additive (${\rho}_1$, ${\rho}_2$)-functional inequality (1) in complex Banach spaces.

APPROXIMATELY QUADRATIC DERIVATIONS AND GENERALIZED HOMOMORPHISMS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.115-130
    • /
    • 2010
  • Let $\cal{A}$ be a unital Banach algebra. If f : $\cal{A}{\rightarrow}\cal{A}$ is an approximately quadratic derivation in the sense of Hyers-Ulam-J.M. Rassias, then f : $\cal{A}{\rightarrow}\cal{A}$ is anexactly quadratic derivation. On the other hands, let $\cal{A}$ and $\cal{B}$ be Banach algebras.Any approximately generalized homomorphism f : $\cal{A}{\rightarrow}\cal{B}$ corresponding to Cauchy, Jensen functional equation can be estimated by a generalized homomorphism.