• 제목/요약/키워드: Extracellular Superoxide Dismutase

검색결과 39건 처리시간 0.025초

Superoxide Dismutase Isoenzyme Activities in Plasma and Tissues of Iraqi Patients with Breast Cancer

  • Hasan, Hathama Razooki;Mathkor, Thikra Hasan;Al-Habal, Mohammed Hasan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2571-2576
    • /
    • 2012
  • Breast cancer is the first of the most common ten cancers in Iraq. Its etiology is multifactorial, oxidative stress and lipid peroxidation being suggested to play important roles in carcinogenesis. The purpose of this study was to investigate the oxidant-antioxidant status in breast cancer patients, by measuring SOD isoenzyme activities (total SOD, CuZn-SOD, Mn-SOD and EC-SOD) in plasma and breast tumors, and by estimating thiobarbituric reactive substances (TBRS) in tissue homogenates. General increase in total SOD activity was observed in plasma and tissue samples of breast tumors, greater in the malignant when compared to benign group (p<0.05). Mn-SOD showed a significant decrease in tissue malignant samples (p<0.05), and insignificant decrease in plasma malignant samples compared with control and benign samples. Plasma EC-SOD activity in both patient benign and malignant breast tumors demonstrated 3.5% and 22.8% increase, respectively. However, there was a decrease in tissue EC-SOD activity in malignant breast tumors when compared with benign. A similar tendency was noted for TBRS. We suggest that elevated total SOD might reflect a response to oxidative stress, and then may predict a state of excess reactive oxygen species in the carcinogenesis process. If there is proteolytic removal of the heparin binding domain, EC-SOD will lose its affinity for the extracellular matrix and diffuse out of the tissue. This will result in a decreased EC-SOD activity, thus leading to an increase in the steady-state concentration of $O^{2-}$ in this domain, and increase in EC-SOD activity in the extracellular fluid. This might explain the results recorded here concerning the decrease in tissue EC-SOD activity and increase in plasma of breast cancer patients.

Antimicrobial Effect of 2-Phenylethynyl-Butyltellurium in Escherichia coli and Its Association with Oxidative Stress

  • Pinheiro, Franciane Cabral;Bortolotto, Vandreza Cardoso;Araujo, Stifani Machado;Poetini, Marcia Rosula;Sehn, Carla Pohl;Neto, Jose S.S.;Zeni, Gilson;Prigol, Marina
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권7호
    • /
    • pp.1209-1216
    • /
    • 2018
  • This study aimed to evaluate the antimicrobial activity of 2-phenylethynyl-butyltellurium (PEBT) in Escherichia coli and the relation to its pro-oxidant effect. For this, we carried out the disk diffusion test, minimum inhibitory concentration (MIC) assay, and survival curve analysis. We also measured the level of extracellular reactive oxygen species (ROS), activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and level of non-protein thiols (NPSH). PEBT at 1.28 and 0.128 mg/disk exhibited antimicrobial capability in the disk diffusion test, with an MIC value of 1.92 mg/ml, whereas PEBT at 0.96, 1.92, and 3.84 mg/ml inhibited bacterial growth after a 9-h exposure. PEBT at 3.84, 1.92, and 0.96 mg/ml increased extracellular ROS production, decreased the intracellular NPSH level, and reduced the SOD and CAT activities. Glutathione or ascorbic acid in the medium protected the bacterial cells from the antimicrobial effect of PEBT. In conclusion, PEBT exhibited antimicrobial activity against E. coli, involving the generation of ROS, oxidation of NPSH, and reduction of the antioxidant defenses in the bacterial cells.

고온 스트레스에 대한 미꾸라지(Misgurnus mizolepis) 항산화 효소 유전자들의 발현 특징 (Transcriptional Response of Major Antioxidant Enzyme Genes to Heat Stress in Mud Loach (Misgurnus mizolepis))

  • 조영선;이상윤;방인철;김동수;남윤권
    • 한국양식학회지
    • /
    • 제19권3호
    • /
    • pp.157-165
    • /
    • 2006
  • 우리나라 주요 담수 어종인 미꾸라지를 ecotoxicogenomic 연구 모델 어류로 개발하기 위한 연구의 일환으로 본 어종이 고온 스트레스 자극에 노출되었을때 야기되는 산화성 스트레스를 검출하고자 항산화 효소(antioxidant enzyme; AOE) 유전자의 발현 양상을 분석하였다. 주요 항산화 효소인 superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) 및 glutathione peroxidases (GPXs)의 transcript들을 특이적으로 정량화할 수 있는 semi-quantitative RT-PCR, real-time PCR 또는 northern blot분석을 통해 $23^{\circ}C$에서 $32^{\circ}C$까지 설정된 실험어의 간 조직내 AOE유전자들의 mRNA level을 분석하였다. 고온에 노출되었을 때 본 어종의 AOE들은 일반적으로 증가된 유전자 발현 양상을 나타내었고, 특히 SOD (2배)와 plasma GPX (3배) 유전자가 가장 유의적인 mRNA 증가를 나타내었다. GST의 경우 상대적으로 적은 증가량을 나타내었고 CAT의 경우 고온자극에 반응하지 않았다. 본 어종은 $29^{\circ}C$ 이상에서 AOE 유전자의 발현 증가를 나타내었고 $32^{\circ}C$에 노출되었을 때 1일째부터 SOD와 plasma GPX mRNA의 증가가 관찰되었다.

IFNγ-mediated inhibition of cell proliferation through increased PKCδ-induced overexpression of EC-SOD

  • Jeon, Yoon-Jae;Yoo, Hyun;Kim, Byung Hak;Lee, Yun Sang;Jeon, Byeongwook;Kim, Sung-Sub;Kim, Tae-Yoon
    • BMB Reports
    • /
    • 제45권11호
    • /
    • pp.659-664
    • /
    • 2012
  • Extracellular superoxide dismutase (EC-SOD) overexpression modulates cellular responses such as tumor cell suppression and is induced by $IFN{\gamma}$. Therefore, we examined the role of EC-SOD in $IFN{\gamma}$-mediated tumor cell suppression. We observed that the dominant-negative protein kinase C delta ($PKC{\delta}$) suppresses $IFN{\gamma}$-induced EC-SOD expression in both keratinocytes and melanoma cells. Our results also showed that $PKC{\delta}$-induced EC-SOD expression was reduced by pretreatment with a PKC-specific inhibitor or a siRNA against $PKC{\delta}$. $PKC{\delta}$-induced EC-SOD expression suppressed cell proliferations by the up-regulation of p21 and Rb, and the downregulation of cyclin A and D. Finally, we demonstrated that increased expression of EC-SOD drastically suppressed lung melanoma proliferation in an EC-SOD transgenic mouse via p21 expression. In summary, our findings suggest that $IFN{\gamma}$-induced EC-SOD expression occurs via activation of $PKC{\delta}$. Therefore, the upregulation of EC-SOD may be effective for prevention of various cancers, including melanoma, via cell cycle arrest.

Inhibition of Inducible Nitric Oxide Synthase Attenuates Monosodium Urate-induced Inflammation in Mice

  • Ju, Tae-Jin;Dan, Jin-Myoung;Cho, Young-Je;Park, So-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권6호
    • /
    • pp.363-369
    • /
    • 2011
  • The present study elucidated the effect of the selective inducible nitric oxide synthase (iNOS) inhibitor $N^6$-(1-iminoethyl)-L-lysine (L-NIL) on monosodium urate (MSU) crystal-induced inflammation and edema in mice feet. L-NIL (5 or 10 mg/kg/day) was administered intraperitoneally 4 h before injection of MSU (4 mg) into the soles of mice hindlimb feet. Twenty-four hours after MSU injection, foot thickness was increased by 160% and L-NIL pretreatment reduced food pad swelling in a dose dependent manner. Pretreatment of 10 mg/kg/day L-NIL significantly suppressed the foot pad swelling by MSU. Plasma level of nitric oxide (NO) metabolites and gene expression and protein level of iNOS in feet were increased by MSU, which was suppressed by L-NIL pretreatment. Similar pattern of change was observed in nitrotyrosine level. MSU increased the gene expression of tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-$1{\beta}$ and L-NIL pretreatment suppressed MSU-induced cytokines expression. The mRNA levels of superoxide dismutase and glutathione peroxidase1 were increased by MSU and L-NIL pretreatment normalized the gene expression. Phosphorylation of extracellular signal-regulated kinase 1/2 and p38 was increased by MSU, which was suppressed by L-NIL pretreatment. The mRNA levels of iNOS, TNF-${\alpha}$, and IL-$1{\beta}$ were increased by MSU in human dermal fibroblasts, C2C12 myoblasts, and human fetal osteoblasts in vitro, which was attenuated by L-NIL in a dose dependent manner. This study shows that L-NIL inhibits MSU-induced inflammation and edema in mice feet suggesting that iNOS might be involved in MSU-induced inflammation.

Comparison between Lucigenin- and Luminol-dependent Chemiluminescence Responses of Rockfish (Sebastes schlegeli) Head Kidney Phagocytes

  • Jung Jae Hyuck;Kwon Se Ryun;Lee Eun Hye;Kim Sung Mi;Jeong Hyun Do;Chung Joon Ki;Kim Ki Hong
    • Fisheries and Aquatic Sciences
    • /
    • 제6권4호
    • /
    • pp.209-212
    • /
    • 2003
  • Lucigenin (Lg)- and luminol (Lm)-dependent chemiluminescence (CL) was used to compare the respiratory burst of rockfish (Sebastes schlegeli) phagocytes after stimulation with phorbol myristate acetate (PMA). To establish which reactive oxygen species (ROS) contributes to the observed CL, the modulators of ROS metabolism, such as superoxide dismutase (SOD), catalase, and sodium azide $(NaN_3)$ were used. Although LgCL responses were inhibited significantly by the addition of either SOD or catalase, in comparison to the control, significantly lower LgCL responses were recorded by SOD than catalase. LmCL also showed significantly decreased responses by the addition of SOD and catalase. However, there were no statistical differences in CL responses between SOD and catalase additions. More profound and significant decrease of LmCL responses were recorded by simultaneous addition of SOD and catalase. Sodium azide markedly enhanced LgCL responses, while it significantly inhibited LmCL responses. These results indicate that LgCL and LmCL can be used to measure extracellular $O_2$ production and myeloperoxidase (MPO)-mediated ROS production in fish phagocytes, respectively. Furthermore, LmCL can be used for analyzing intracellular ROS production by simultaneous addition of both SOD and catalase.

Protective role of paeoniflorin from hydrogen peroxide-mediated oxidative damage in C6 glial cells

  • Lee, Ah Young;Nam, Mi Na;Kim, Hyun Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • 제63권2호
    • /
    • pp.137-145
    • /
    • 2020
  • Oxidative stress is one of the pathogenic mechanisms of various neurodegenerative diseases, such as Alzheimer's disease. Neuroglia, the most abundant cells in the brain, is thought to play an important role in the antioxidant defense system and neuronal metabolic support against neurotoxicity and oxidative stress. We investigated the protective effect of paeoniflorin (PF) against oxidative stress in C6 glial cells. Exposure of C6 glial cells to hydrogen peroxide (H2O2, 500 μM) significantly decreased cell viability and increased amounts of lactate dehydrogenase (LDH) release, indicating H2O2-induced cellular damage. However, treatment with PF significantly attenuated H2O2-induced cell death as shown by increased cell survival and decreased LDH release. The H2O2-stimulated reactive oxygen species production was also suppressed, and it may be associated with improvement of superoxide dismutase activity by treatment with PF. In addition, an increase in ratio of Bcl-2/Bax protein expression was observed after treatment with PF. In particular, the down-stream of the apoptotic signaling pathway was inhibited in the presence of PF, mostly by reduction of cleaved-poly ADP ribose polymerase, cleaved caspase-3, and -9 protein expression. Furthermore, H2O2-induced phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinase 1/2 was attenuated by treatment with PF. Taken together, neuroprotective effect of PF against oxidative stress probably result from the regulation of apoptotic pathway in C6 glial cells. In conclusion, our findings suggest that PF may be a potent therapeutic agent for neurodegenerative disorders.

Inactivation of Vibrio parahaemolyticus by Aqueous Ozone

  • Feng, Lifang;Zhang, Kuo;Gao, Mengsha;Shi, Chunwei;Ge, Caiyun;Qu, Daofeng;Zhu, Junli;Shi, Yugang;Han, Jianzhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권8호
    • /
    • pp.1233-1246
    • /
    • 2018
  • Vibrio parahaemolyticus contamination causes serious foodborne illness and has become a global health problem. As a disinfectant, aqueous ozone can effectively kill a number of bacteria, viruses, parasites, and other microorganisms. In this study, three factors, namely, the aqueous ozone concentration, the exposure time, and the bacterial density, were analyzed by response surface methodology, and the aqueous ozone concentration was the most influential factor in the sterilization ratio. Under low aqueous ozone concentrations (less than 0.125 mg/l), the bacterial cell membranes remained intact, and the ozone was detoxified by intracellular antioxidant enzymes (e.g., superoxide dismutase and catalase). Under high aqueous ozone concentrations (more than 1 mg/l), cell membranes were damaged by the degree of peripheral electronegativity at the cell surface and the concentration of lactate dehydrogenase released into the extracellular space, and the ultrastructures of the cells were confirmed by transmission electron microscopy. Aqueous ozone penetrated the cells through leaking membranes, inactivated the enzymes, inhibited almost all the genes, and degraded the genetic materials of gDNA and total RNA, which eventually led to cell death.

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway

  • Che, Nan;Ma, Yijie;Xin, Yinhu
    • Biomolecules & Therapeutics
    • /
    • 제25권3호
    • /
    • pp.272-278
    • /
    • 2017
  • Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.

Melatonin mitigates the adverse effect of hypoxia during myocardial differentiation in mouse embryonic stem cells

  • Lee, Jae-Hwan;Yoo, Yeong-Min;Lee, Bonn;Jeong, SunHwa;Tran, Dinh Nam;Jeung, Eui-Bae
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.54.1-54.13
    • /
    • 2021
  • Background: Hypoxia causes oxidative stress and affects cardiovascular function and the programming of cardiovascular disease. Melatonin promotes antioxidant enzymes such as superoxide dismutase, glutathione reductase, glutathione peroxidase, and catalase. Objectives: This study aims to investigate the correlation between melatonin and hypoxia induction in cardiomyocytes differentiation. Methods: Mouse embryonic stem cells (mESCs) were induced to myocardial differentiation. To demonstrate the influence of melatonin under hypoxia, mESC was pretreated with melatonin and then cultured in hypoxic condition. The cardiac beating ratio of the mESC-derived cardiomyocytes, mRNA and protein expression levels were investigated. Results: Under hypoxic condition, the mRNA expression of cardiac-lineage markers (Brachyury, Tbx20, and cTn1) and melatonin receptor (Mtnr1a) was reduced. The mRNA expression of cTn1 and the beating ratio of mESCs increased when melatonin was treated simultaneously with hypoxia, compared to when only exposed to hypoxia. Hypoxia-inducible factor (HIF)-1α protein decreased with melatonin treatment under hypoxia, and Mtnr1a mRNA expression increased. When the cells were exposed to hypoxia with melatonin treatment, the protein expressions of phospho-extracellular signal-related kinase (p-ERK) and Bcl-2-associated X proteins (Bax) decreased, however, the levels of phospho-protein kinase B (p-Akt), phosphatidylinositol 3-kinase (PI3K), B-cell lymphoma 2 (Bcl-2) proteins, and antioxidant enzymes including Cu/Zn-SOD, Mn-SOD, and catalase were increased. Competitive melatonin receptor antagonist luzindole blocked the melatonin-induced effects. Conclusions: This study demonstrates that hypoxia inhibits cardiomyocytes differentiation and melatonin partially mitigates the adverse effect of hypoxia in myocardial differentiation by regulating apoptosis and oxidative stress through the p-AKT and PI3K pathway.