Browse > Article
http://dx.doi.org/10.4014/jmb.1802.12074

Antimicrobial Effect of 2-Phenylethynyl-Butyltellurium in Escherichia coli and Its Association with Oxidative Stress  

Pinheiro, Franciane Cabral (Laboratorio de Avaliacoes Farmacologicas e Toxicologicas aplicadas as Moleculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui)
Bortolotto, Vandreza Cardoso (Laboratorio de Avaliacoes Farmacologicas e Toxicologicas aplicadas as Moleculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui)
Araujo, Stifani Machado (Laboratorio de Avaliacoes Farmacologicas e Toxicologicas aplicadas as Moleculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui)
Poetini, Marcia Rosula (Laboratorio de Avaliacoes Farmacologicas e Toxicologicas aplicadas as Moleculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui)
Sehn, Carla Pohl (Laboratorio de Avaliacoes Farmacologicas e Toxicologicas aplicadas as Moleculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui)
Neto, Jose S.S. (Laboratorio de Sintese, Reatividade e Avaliacao Farmacologica e Toxicologica de Organocalcogenios, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria)
Zeni, Gilson (Laboratorio de Sintese, Reatividade e Avaliacao Farmacologica e Toxicologica de Organocalcogenios, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria)
Prigol, Marina (Laboratorio de Avaliacoes Farmacologicas e Toxicologicas aplicadas as Moleculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.7, 2018 , pp. 1209-1216 More about this Journal
Abstract
This study aimed to evaluate the antimicrobial activity of 2-phenylethynyl-butyltellurium (PEBT) in Escherichia coli and the relation to its pro-oxidant effect. For this, we carried out the disk diffusion test, minimum inhibitory concentration (MIC) assay, and survival curve analysis. We also measured the level of extracellular reactive oxygen species (ROS), activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), and level of non-protein thiols (NPSH). PEBT at 1.28 and 0.128 mg/disk exhibited antimicrobial capability in the disk diffusion test, with an MIC value of 1.92 mg/ml, whereas PEBT at 0.96, 1.92, and 3.84 mg/ml inhibited bacterial growth after a 9-h exposure. PEBT at 3.84, 1.92, and 0.96 mg/ml increased extracellular ROS production, decreased the intracellular NPSH level, and reduced the SOD and CAT activities. Glutathione or ascorbic acid in the medium protected the bacterial cells from the antimicrobial effect of PEBT. In conclusion, PEBT exhibited antimicrobial activity against E. coli, involving the generation of ROS, oxidation of NPSH, and reduction of the antioxidant defenses in the bacterial cells.
Keywords
Antibacterial; tellurium; oxidative stress; pro-oxidant activity; thiol groups;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Vasquez WA, Lagunas MJ, Cornejo FA, Pinto CA, Arenas FA, Vasquez CC. 2015. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions. Arch. Biochem. Biophys. 566: 67-75.   DOI
2 Taylor DE. 1999. Bacterial tellurite resistance. Trends Microbiol. 7: 111-115.   DOI
3 Turner RJ, Weiner JH, Taylor DE. 1999. Tellurite-mediated thiol oxidation in Escherichia coli. J. Microbiol. 145: 2549-2557.   DOI
4 Cunha RLOR, Gouvea IE, Juliano L. 2009. A glimpse on biological activities of tellurium compounds. An. Acad. Bras Cienc. 81: 393-407.   DOI
5 Avila DS, Beque MC, Folmer V, Braga AL, Zeni G, Nogueira CW, et al. 2006. Diethyl 2-phenyl-2 tellurophenyl vinylphosphonate: an organotellurium compound with low toxicity. Toxicology 224: 100-107.   DOI
6 Quines CB, Rosa SG, Neto JS, Zeni G, Nogueira CW. 2013. Phenylethynyl-butyltellurium inhibits the sulfhydryl enzyme $Na^{+},\;K^{+}$ ATPase: an effect dependent on the tellurium atom. Biol. Trace Elem. Res. 155: 261-266.   DOI
7 Quines CB, Rocha JT, Pesarico AP, Neto, JS, Zeni G, Nogueira CW. 2015. Involvement of the serotonergic system in the anxiolytic-like effect of 2-phenylethynyl-butyltellurium in mice. Behav. Brain Res. 277: 221-227.   DOI
8 Puntel RL, Roos D, Seeger RL, Rocha JB. 2013. Mitrochondrial inhibition by different organochalcogens. Toxicol. In Vitro 27: 59-79.   DOI
9 Souza AC, Luchese C, Neto JS, Nogueira CW. 2009. Antioxidant effect of a novel class of telluroacetilene compounds: studies in vitro and in vivo. Life Sci. J. 84: 351-357.   DOI
10 Puntel RL, Roos D, Seeger RL, Rocha JB. 2012. Organochalcogens inhibit mitochondrial complexes I and II in rat brain: possible implications for neurotoxicity. Neurotox. Res. 24: 109-118.
11 Souza AC, Acker CI, Gai BM, Neto JS, Nogueira CW. 2012. 2-Phenylethynyl-butyltellurium improves memory in mice. Neurochem. Int. 60: 409-414.   DOI
12 Comasseto JV, Menezes PH, Stefani HA, Zeni G, Braga AL. 1996. Addition of hydrogen halides to acetylenic selenides. Synthesis of 1-halo-1-selenoalkenes. Tetrahedron 52: 9687-9702.   DOI
13 Clinical and Laboratory Standards Institute. 2009. Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. CLSI, Wayne, PA.
14 Politi ASF, Mello PCJ, Migliato FK, Neupomuceno ALA, Moreira DRR, Pietro CLRR. 2011. Antimicrobial, cytotoxic and antioxidant activities and determination of the total tannin content of bark extracts Endopleura uchi. Int. J. Mol. Sci. 12: 2757-2768.   DOI
15 Kostyuk VA, Potapovich AI. 1989. Superoxide driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Biochem. Int. 19: 1117-1124.
16 Goswami M, Mangoli SH, Jawali N. 2006. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob. Agents Chemother. 50: 949-54.   DOI
17 Santos RC, dos Santos Alves CF, Scheneider T, Lopes LQ, Aurich C, Giongo JL, et al. 2012. Antimicrobial activity of Amazonian oils against Paenibacillus species. J. Invertebr. Pathol. 8: 109:265.   DOI
18 Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW. 1999. Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. J. Neuropathol. Exp. Neurol. 155: 109-117.   DOI
19 Medeiros FO, Alves FG, Lisboa CR, Martins DR, Burkert CAV. 2008. Ondas ultrassonicas e perolas de vidro: um novo metodo de extracao de ${\beta}$-galactosidase para uso em laboratorio. Quim. Nova 31: 336-339.   DOI
20 Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77.   DOI
21 Aebi H. 1984. Catalase in vitro. Methods Enzymol. 105: 121-126.
22 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI
23 Soni D, Gupta KP, Humar Y, Chandrashekharn TG. 2005. Antibacterial activity of some unsymmetrical diorganyltellurium (IV) dichlorides. Indian J. Biochem. Biophys. 42: 398-400.
24 Imlay JA. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77: 755-776.   DOI
25 Pesarico AP, Sartori G, dos Santos CFA, Neto JSS, Bortolotto V, Santos RCV, et al. 2013. 2,2-Dithienyl diselenide pro-oxidant activity accounts for antibacterial and antifungal activities. Microbiol. Res. 168: 563-568.   DOI
26 Holvoet K, Sampers I, Callens B, Dewulf J, Uyttendaele M. 2013. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil. Appl. Environ. Microbiol. 79: 6677-6683.   DOI
27 Matuschek E, Brown DF, Kahlmeter G. 2014. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 20: 255-266.   DOI
28 Andremont A. 2001. The future control of bacterial resistance to antimicrobial agents. Am. J. Infect. Control 29: 256-258.   DOI
29 Oloketuyi SF, Khan F. 2017. Strategies for biofilm inhibition and virulence attenuation of foodborne pathogen-Escherichia coli O157:H7. Curr. Microbiol. 74: 1477-1489.   DOI
30 Albesa I, Becerra MC, Battan PC, Paez PL. 2004. Oxidative stress involved in the antibacterial action of different antibiotics. Biochem. Biophys. Res. Commun. 317: 605-609.   DOI
31 Choia H, Yanga Z, Weisshaar JC. 2015. Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15. Proc. Natl. Acad. Sci. USA 112: 303-310.   DOI
32 Lin X, Xu X, Yang C, Zhao Y, Feng Z, Dong Y. 2009. Activities of antioxidant enzymes in three bacteria exposed to bensulfuron-methyl. Ecotoxicol. Environ. Saf. 72: 1899-1904.   DOI
33 Paez PL, Bazan CM, Bongiovanni ME, Toneatto J, Albesa I, Becerra MC, et al. 2013. Oxidative stress and antimicrobial activity of chromium(III) and ruthenium(II) complexes on Staphylococcus aureus and Escherichia coli. Biomed. Res. Int. 2013: 906912.
34 Semchyshyn H, Bagnyukova T, Storey KB, Lushchak V. 2005. Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli. Cell Biol. Int. Rep. 29: 898-902.   DOI
35 Imlay JA. 2013. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Rev. Nat. Microbiol. 11: 443-454.   DOI
36 Keele BB, McCord JM, Fridovich I. 1970. Superoxide dismutase from Escherichia coli B: a new manganese-containing enzyme. J. Biol. Chem. 245: 6176-6181.
37 Loewen PC, Switala J, Triggs-Raine L. 1985. Catalase HPI and HPII in Escherichia coli are induced independently. Arch. Biochem. Biophys. 243: 144-149.   DOI
38 Lu Z, Sang L, Li Z, Min H. 2008. Catalase and superoxide dismutase activities in a Strenotrophomonas maltophilia WZ2 resistant to herbicide pollution. Ecotoxicol. Environ. Saf. 72: 136-143.
39 Goswami M, Mangoli SH, Jawali N. 2006. Involvement of reactive oxygen species in the action of ciprofloxacin against Escherichia coli. Antimicrob. Agents Chemother. 50: 949-954.   DOI
40 Becerra MC, Albesa I. 2002. Oxidative stress induced by ciprofloxacin in Staphylococcus aureus. Ccommunications 4: 1003-1007.
41 Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3: 3-8.
42 Chasteen TG, Fuentes DE, Tantalean JC, Vasquez CC. 2009. Tellurite: history, oxidative stress, and molecular mechanisms of resistance. FEMS Microbiol. Rev. 33: 820-832.   DOI
43 Zhang Y, Meng D, Wang Z, Guo H, Wang Y, Wang X, et al. 2012. Oxidative stress response in atrazine-degrading bacteria exposed to atrazine. J. Hazard. Mater. 30: 434-438.
44 Aradska J, Smidak R, Turkovicova L, Turna J, Lubec G. 2013. Proteomic differences between tellurite-sensitive and tellurite-resistant E. coli. PLoS One 8: e78010.   DOI
45 Vásquez WA, Lagunas MJ, Arenas FA, Pinto CA, Cornejo FA, Wansapura PT, et al. 2014. Tellurite reduction by Escherichia coli NDH-II dehydrogenase results in superoxide production in membranes of toxicant-exposed cells. Biometals 27: 237-246.   DOI