Browse > Article
http://dx.doi.org/10.4014/jmb.1801.01056

Inactivation of Vibrio parahaemolyticus by Aqueous Ozone  

Feng, Lifang (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Zhang, Kuo (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Gao, Mengsha (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Shi, Chunwei (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Ge, Caiyun (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Qu, Daofeng (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Zhu, Junli (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Shi, Yugang (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Han, Jianzhong (School of Food Science and Biotechnology, Zhejiang Gongshang University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.8, 2018 , pp. 1233-1246 More about this Journal
Abstract
Vibrio parahaemolyticus contamination causes serious foodborne illness and has become a global health problem. As a disinfectant, aqueous ozone can effectively kill a number of bacteria, viruses, parasites, and other microorganisms. In this study, three factors, namely, the aqueous ozone concentration, the exposure time, and the bacterial density, were analyzed by response surface methodology, and the aqueous ozone concentration was the most influential factor in the sterilization ratio. Under low aqueous ozone concentrations (less than 0.125 mg/l), the bacterial cell membranes remained intact, and the ozone was detoxified by intracellular antioxidant enzymes (e.g., superoxide dismutase and catalase). Under high aqueous ozone concentrations (more than 1 mg/l), cell membranes were damaged by the degree of peripheral electronegativity at the cell surface and the concentration of lactate dehydrogenase released into the extracellular space, and the ultrastructures of the cells were confirmed by transmission electron microscopy. Aqueous ozone penetrated the cells through leaking membranes, inactivated the enzymes, inhibited almost all the genes, and degraded the genetic materials of gDNA and total RNA, which eventually led to cell death.
Keywords
Vibrio parahaemolyticus; aqueous ozone; response surface methodology; transcriptome; inactivation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Feng L, Wang G, Hamilton EP, Xiong J, Yan G, Chen K, et al. 2017. A germline-limited piggyBac transposase gene is required for precise excision in Tetrahymena genome rearrangement. Nucleic Acids Res. 45: 9481-9502.   DOI
2 Glowacz M, Colgan R, Rees D. 2015. The use of ozone to extend the shelf-life and maintain quality of fresh produce. J. Sci. Food Agric. 95: 662-671.   DOI
3 Kim JG, Yousef AE, Khadre MA. 2003. Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 45: 167-218.
4 Wilson WW, Wade MM, Holman SC, Champlin FR. 2001. Status of methods for assessing bacterial cell surface charge properties based on zeta potential measurements. J. Microbiol. Methods 43: 153-164.   DOI
5 Klodzinska E, Szumski M, Dziubakiewicz E, Hrynkiewicz K, Skwarek E, Janusz W, et al. 2010. Effect of zeta potential value on bacterial behavior during electrophoretic separation. Electrophoresis 31: 1590-1596.   DOI
6 Uchide N, Ohyama K, Bessho T, Toyoda H. 2009. Lactate dehydrogenase leakage as a marker for apoptotic cell degradation induced by influenza virus infection in human fetal membrane cells. Intervirology 52: 164-173.   DOI
7 Hunt NK, Mariñas BJ. 1999. Inactivation of Escherichia coli with ozone: chemical and inactivation kinetics. Water Res. 33: 2633-2641.   DOI
8 Kang SW. 2015. Superoxide dismutase 2 gene and cancer risk: evidence from an updated meta-analysis. Int. J. Clin. Exp. Med. 8: 14647-14655.
9 Bocci V. 2008. The question of balance: the interaction between blood and ozone, pp. 155-165. In Valacchi G, Davis P (eds.), Oxidants in Biology. Springer, Netherlands.
10 Clancy S. 2008. DNA damage & repair: mechanisms for maintaining DNA integrity. Nat. Educ. 1: 103.
11 Zheng J, Su C, Zhou JW, Xu LK, Qian YY, Chen H. 2017. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem. Eng. J. 317: 309-316.   DOI
12 Patil S, Valdramidis VP, Cullen PJ, Frias J, Bourke P. 2010. Inactivation of Escherichia coli by ozone treatment of apple juice at different pH levels. Food Microbiol. 27: 835-840.   DOI
13 Lee Y, Gerrity D, Lee M, Bogeat AE, Salhi E, Gamage S, et al. 2013. Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: use of kinetic and water specific information. Environ. Sci. Technol. 47: 5872-5881.   DOI
14 von Gunten U. 2003. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 37: 1469-1487.   DOI
15 Song WJ, Shin JY, Ryu S, Kang DH. 2015. Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in apple juice at different pH levels by gaseous ozone treatment. J. Appl. Microbiol. 119: 465-474.   DOI
16 Miller FA, Silva CLM, Brandao TRS. 2013. A review on ozone-based treatments for fruit and vegetables preservation. Food Eng. Rev. 5: 77-106.   DOI
17 Broadwater WT, Hoehn RC, King PH. 1973. Sensitivity of three selected bacterial species to ozone. Appl. Microbiol. 26: 391-393.
18 Patil S, Cullen PJ, Kelly B, Frias JM, Bourke P. 2009. Extrinsic control parameters for ozone inactivation of Escherichia coli using a bubble column. J. Appl. Microbiol. 107: 830-837.   DOI
19 Pavlovich MJ, Chang HW, Sakiyama Y, Clark DS, Graves DB. 2013. Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 46: 145202.   DOI
20 Jimenez-Arribas G, Leautaud V, Amabile-Cuevas CF. 2001. Regulatory locus soxRS partially protects Escherichia coli against ozone. FEMS Microbiol. Lett. 195: 175-177.   DOI
21 Laukens K, Naulaerts S, Berghe WV. 2015. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Proteomics 15: 981-996.   DOI
22 Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676.   DOI
23 Feng LF, Cheng XB, He SS, Li JR. 2013. Identification and evaluation of Vibrio vulnificus-specific target genes. J. Fish. China 37: 790-800.   DOI
24 Kuroda T, Tsuchiya T. 2009. Multidrug efflux transporters in the MATE family. Biochim. Biophys. Acta 1794: 763-768.   DOI
25 Patil S, Valdramidis VP, Karatzas KA, Cullen PJ, Bourke P. 2011. Assessing the microbial oxidative stress mechanism of ozone treatment through the responses of Escherichia coli mutants. J. Appl. Microbiol. 111: 136-144.   DOI
26 Hess S, Gallert C. 2015. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone. J. Water Health 13: 1020-1028.   DOI
27 Czekalski N, Imminger S, Salhi E, Veljkovic M, Kleffel K, Drissner D, et al. 2016. Inactivation of antibiotic resistant bacteria and resistance genes by ozone: from laboratory experiments to full-scale wastewater treatment. Environ. Sci. Technol. 50: 11862-11871.   DOI
28 Hamelin C, Sarhan F, Chung YS. 1977. Ozone-induced DNA degradation in different DNA polymerase I mutants of Escherichia coli K12. Biochem. Biophys. Res. Commun. 77: 220-224.   DOI
29 Zhang F, Zhu JL, Feng LF. 2016. Inhibition analysis of resveratrol against Vibrio parahaemolyticus biofilm based on RNA-Seq technology. Acta Microbiol. Sin. 56: 856-866.
30 The Chinese National Hygiene Ministry. 2010. Microbiological examination of food hygiene - examination of Vibrio parahaemolyticus. The National Standard of the People's Republic of China, GB 4789.2-2010. Beijing, China.
31 The Chinese National Hygiene Ministry. 2016. Food microbiological examination: aerobic plate count. The National Standard of the People's Republic of China, GB 4789.2-2016. Beijing, China.
32 Rakness K, Gordon G, Langlais B, Masschelein W, Matsumoto N, Richard Y, et al. 1996. Guideline for measurement of ozone concentration in the process gas from an ozone generator. Ozone Sci. Eng. 18: 209-229.   DOI
33 Xu H, Luo X, Qian J, Pang X, Song J, Qian G, et al. 2012. FastUniq: a fast de novo duplicates removal tool for paired short reads. PLoS One 7: e52249.   DOI
34 Wang W, Li M, Li Y. 2015. Intervention strategies for reducing Vibrio parahaemolyticus in seafood: a review. J. Food Sci. 80: R10-R19.   DOI
35 Sahoo C, Gupta AK. 2012. Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J. Hazard. Mater. 215-216: 302-310.   DOI
36 Clogston JD, Patri AK. 2011. Zeta potential measurement. Methods Mol. Biol. 697: 63-70.
37 Kim S, Park J, Choi O, Kim J, Seo YS. 2014. Investigation of quorum sensing-dependent gene expression in Burkholderia gladioli BSR3 through RNA-Seq analyses. J. Microbiol. Biotechnol. 24: 1609-1621.   DOI
38 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.   DOI
39 Su YC, Liu C. 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 24: 549-558.   DOI
40 Letchumanan V, Chan KG, Lee LH. 2014. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 5: 705.
41 Velazquez-Roman J, Leon-Sicairos N, de Jesus Hernandez-Diaz L, Canizalez-Roman A. 2013. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front. Cell. Infect. Microbiol. 3: 110.
42 Elvis AM, Ekta JS. 2011. Ozone therapy: a clinical review. J. Nat. Sci. Biol. Med. 2: 66-70.   DOI
43 Guzel-Seydim ZB, Greene AK, Seydim AC. 2004. Use of ozone in the food industry. LWT Food Sci. Technol. 37: 453-460.   DOI
44 Perry JJ, Yousef AE. 2011. Decontamination of raw foods using ozone-based sanitization techniques. Annu. Rev. Food Sci. Technol. 2: 281-298.   DOI
45 Feng L, Fu C, Yuan D, Miao W. 2014. A P450 gene associated with robust resistance to DDT in ciliated protozoan, Tetrahymena thermophila by efficient degradation. Aquat. Toxicol. 149: 126-132.   DOI
46 Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. 2012. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578.   DOI
47 Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, et al. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. Lancet 361: 743-749.   DOI
48 Hoffmann M, Brown EW, Feng PCH, Keys CE, Fischer M, Monday SR. 2010. PCR-based method for targeting 16S-23S rRNA intergenic spacer regions among Vibrio species. BMC Microbiol. 10: 90.   DOI