Browse > Article
http://dx.doi.org/10.4062/biomolther.2016.098

Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway  

Che, Nan (Department of Neurology, Ninth Hospital of Xi'an)
Ma, Yijie (Department of Neurological Surgery, Hospital of Xinjiang Production and Construction Corps)
Xin, Yinhu (Department of Encephalopathy, Shaanxi Traditional Chinese Medicine Hospital)
Publication Information
Biomolecules & Therapeutics / v.25, no.3, 2017 , pp. 272-278 More about this Journal
Abstract
Fucoidan has been reported to exhibit various beneficial activities ranging from to antivirus and anticancer properties. However, little information is available about the effects of fucoidan on cerebral ischemia-reperfusion injury (IRI). Our study aimed to explore the effects of fucoidan on cerebral IRI, as well as the underlying mechanisms. Sprague-Dawley (SD) rats were randomly subjected to four groups: Sham, IRI+saline (IRI+S), IRI+80 mg/kg fucoidan (IRI+F80), and IRI+160 mg/kg fucoidan (IRI+F160). Fucoidan (80 mg/kg or 160 mg/kg) was intraperitoneally injected from 7 days before the rats were induced to cerebral IRI model with middle cerebral artery occlusion (MCAO) method. At 24 h after reperfusion, neurological deficits and the total infarct volume were determined. The levels of inflammation-associated cytokines (interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and tumor necrosis factor (TNF)-${\alpha}$), oxidative stress-related proteins (malondialdehyde (MDA) and superoxide dismutase (SOD)) in the ischemic brain were measured by enzyme-linked immunosorbent assay (ELISA). Besides, the levels of apoptosis-related proteins (p-53, Bax, and B-cell lymphoma (Bcl)-2) and mitogen-activated protein kinase (MAPK) pathway (phosphorylation-extracellular signal-regulated kinase (p-ERK), p-c-Jun N-terminal kinase (JNK), and p-p38) were measured. Results showed that administration of fucoidan significantly reduced the neurological deficits and infarct volume compared to the IRI+S group in a dose-dependent manner. Also, fucoidan statistically decreased the levels of inflammation-associated cytokines, and oxidative stress-related proteins, inhibited apoptosis, and suppressed the MAPK pathway. So, Fucoidan plays a protective role in cerebral IRI might be by inhibition of MAPK pathway.
Keywords
Fucoidan; Cerebral ischemia-reperfusion injury; MAPK pathway;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bojakowski, K., Abramczyk, P., Bojakowska, M., Zwolinska, A., Przybylski, J. and Gaciong, Z. (2001) Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat. J. Physiol. Pharmacol. 52, 137-143.
2 Li, C., Gao, Y., Xing, Y., Zhu, H., Shen, J. and Tian, J. (2011) Fucoidan, a sulfated polysaccharide from brown algae, against myocardial ischemia-reperfusion injury in rats via regulating the inflammation response. Food Chem. Toxicol. 49, 2090-2095.   DOI
3 Li, M., Qu, Y. Z., Zhao, Z. W., Wu, S. X., Liu, Y. Y., Wei, X. Y., Gao, L. and Gao, G. D. (2012) Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochem. Int. 60, 458-465.   DOI
4 Li, Y., Liu, L., Liu, D., Woodward, S., Barger, S. W., Mrak, R. E. and Griffin, W. S. (2004) Microglial activation by uptake of fDNA via a scavenger receptor. J. Neuroimmunol. 147, 50-55.   DOI
5 Loddick, S. A., Turnbull, A. V. and Rothwell, N. J. (1998) Cerebral interleukin- 6 is neuroprotective during permanent focal cerebral ischemia in the rat. J. Cereb. Blood Flow Metab. 18, 176-179.   DOI
6 Maruyama, H., Tamauchi, H., Hashimoto, M. and Nakano, T. (2003) Antitumor activity and immune response of Mekabu fucoidan extracted from Sporophyll of Undaria pinnatifida. In Vivo 17, 245-249.
7 Muralikrishna Adibhatla, R. and Hatcher, J. F. (2006) Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40, 376-387.   DOI
8 Nakka, V. P., Gusain, A., Mehta, S. L. and Raghubir, R. (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol. Neurobiol. 37, 7-38.   DOI
9 Nilupul Perera, M., Ma, H. K., Arakawa, S., Howells, D. W., Markus, R., Rowe, C. C. and Donnan, G. A. (2006) Inflammation following stroke. J. Clin. Neurosci. 13, 1-8.   DOI
10 Boo, H. J., Hyun, J. H., Kim, S. C., Kang, J. I., Kim, M. K., Kim, S. Y., Cho, H., Yoo, E. S. and Kang, H. K. (2011) Fucoidan from Undaria pinnatifida induces apoptosis in A549 human lung carcinoma cells. Phytother. Res. 25, 1082-1086.   DOI
11 Broughton, B. R., Reutens, D. C. and Sobey, C. G. (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40, e331-e339.   DOI
12 Cui, Y. Q., Zhang, L. J., Zhang, T., Luo, D. Z., Jia, Y. J., Guo, Z. X., Zhang, Q. B., Wang, X. and Wang, X. M. (2010) Inhibitory effect of fucoidan on nitric oxide production in lipopolysaccharide-activated primary microglia. Clin. Exp. Pharmacol. Physiol. 37, 422-428.   DOI
13 Calcagni, E. and Elenkov, I. (2006) Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases. Ann. N. Y. Acad. Sci. 1069, 62-76.   DOI
14 Chang, Y., Hsiao, G., Chen, S. H., Chen, Y. C., Lin, J. H., Lin, K. H., Chou, D. S. and Sheu, J. R. (2007) Tetramethylpyrazine suppresses $HIF-1{\alpha}$, $TNF-{\alpha}$, and activated caspase-3 expression in middle cerebral artery occlusion-induced brain ischemia in rats. Acta Pharmacol. Sin. 28, 327-333.   DOI
15 Chen, J., Wang, W., Zhang, Q., Li, F., Lei, T., Luo, D., Zhou, H. and Yang, B. (2013) Low molecular weight fucoidan against renal ischemia- reperfusion injury via inhibition of the MAPK signaling pathway. PLoS ONE 8, e56224.   DOI
16 Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D'Incecco, A., Piccoli, A., Totani, L., Tinari, N., Morozevich, G. E., Berman, A. E., Bilan, M. I., Usov, A. I., Ustyuzhanina, N. E., Grachev, A. A., Sanderson, C. J., Kelly, M., Rabinovich, G. A., Iacobelli, S., Nifantiev, N. E.; Consorzio Interuniversitario Nazionale per la Bio-Oncologia, Italy (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17, 541-552.   DOI
17 Speidel, D. (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol. 20, 14-24.   DOI
18 Omata, M., Matsui, N., Inomata, N. and Ohno, T. (1997) Protective effects of polysaccharide fucoidin on myocardial ischemia-reperfusion injury in rats. J. Cardiovasc. Pharmacol. 30, 717-724.   DOI
19 Paller, M. S., Hoidal, J. R. and Ferris, T. F. (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J. Clin. Invest. 74, 1156-1164.   DOI
20 Prokofjeva, M. M., Imbs, T. I., Shevchenko, N. M., Spirin, P. V., Horn, S., Fehse, B., Zvyagintseva, T. N. and Prassolov, V. S. (2013) Fucoidans as potential inhibitors of HIV-1. Mar. Drugs 11, 3000-3014.   DOI
21 Wang, J., Zhang, Q., Zhang, Z., Song, H. and Li, P. (2010) Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 46, 6-12.   DOI
22 Sugawara, T. and Chan, P. H. (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid. Redox Signal. 5, 597-607.   DOI
23 Terao, S., Yilmaz, G., Stokes, K. Y., Ishikawa, M., Kawase, T. and Granger, D. N. (2008) Inflammatory and injury responses to ischemic stroke in obese mice. Stroke 39, 943-950.   DOI
24 Thuy, T. T., Ly, B. M., Van, T. T., Quang, N. V., Tu, H. C., Zheng, Y., Seguin-Devaux, C., Mi, B. and Ai, U. (2015) Anti-HIV activity of fucoidans from three brown seaweed species. Carbohydr. Polym. 115, 122-128.   DOI
25 Wang, Q., Tang, X. N. and Yenari, M. A. (2007) The inflammatory response in stroke. J. Neuroimmunol. 184, 53-68.   DOI
26 Wong, C. H. and Crack, P. J. (2008) Modulation of neuro-inflammation and vascular response by oxidative stress following cerebral ischemia-reperfusion injury. Curr. Med. Chem. 15, 1-14.   DOI
27 Eefting, F., Rensing, B., Wigman, J., Pannekoek, W. J., Liu, W. M., Cramer, M. J., Lips, D. J. and Doevendans, P. A. (2004) Role of apoptosis in reperfusion injury. Cardiovasc. Res. 61, 414-426.   DOI
28 Deane, R., Du Yan, S., Submamaryan, R. K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., Zhu, H., Ghiso, J., Frangione, B., Stern, A., Schmidt, A. M., Armstrong, D. L., Arnold, B., Liliensiek, B., Nawroth, P., Hofman, F., Kindy, M., Stern, D. and Zlokovic, B. (2003) RAGE mediates amyloid-$\beta$ peptide transport across the blood-brain barrier and accumulation in brain. Nat. Med. 9, 907-913.   DOI
29 Do, H., Pyo, S. and Sohn, E. H. (2010) Suppression of iNOS expression by fucoidan is mediated by regulation of p38 MAPK, JAK/STAT, AP-1 and IRF-1, and depends on up-regulation of scavenger receptor B1 expression in $TNF-{\alpha}$- and $IFN-{\gamma}$-stimulated C6 glioma cells. J. Nutr. Biochem. 21, 671-679.   DOI
30 Duan, Q., Wang, X., Wang, Z., Lu, T., Han, Y. and He, S. (2004) Role of mitochondria in neuron apoptosis during ischemia-reperfusion injury. J. Huazhong Univ. Sci. Technol. Med. Sci. 24, 441-444.   DOI
31 Gao, Y., Dong, C., Yin, J., Shen, J., Tian, J. and Li, C. (2012) Neuroprotective effect of fucoidan on H2O2-induced apoptosis in PC12 cells via activation of PI3K/Akt pathway. Cell. Mol. Neurobiol. 32, 523-529.   DOI
32 Jean, W. C., Spellman, S. R., Nussbaum, E. S. and Low, W. C. (1998) Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43, 1382-1396; discussion 1396-1397.
33 Jhamandas, J. H., Wie, M. B., Harris, K., MacTavish, D. and Kar, S. (2005) Fucoidan inhibits cellular and neurotoxic effects of $\beta$-amyloid ($A{\beta}$) in rat cholinergic basal forebrain neurons. Eur. J. Neurosci. 21, 2649-2659.   DOI
34 Johnson, G. L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912.   DOI
35 Yamasaki, Y., Matsuura, N., Shozuhara, H., Onodera, H., Itoyama, Y. and Kogure, K. (1995) Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26, 676-681.   DOI
36 Yi, J. H., Park, S. W., Kapadia, R. and Vemuganti, R. (2007) Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochem. Int. 50, 1014-1027.   DOI
37 Zhou, H., Ma, Y., Zhou, Y., Liu, Z., Wang, K. and Chen, G. (2003) Effects of magnesium sulfate on neuron apoptosis and expression of caspase-3, bax and bcl-2 after cerebral ischemia-reperfusion injury. Chin. Med. J. 116, 1532-1534.
38 Jin, W., Wang, J., Jiang, H., Song, N., Zhang, W. and Zhang, Q. (2013a) The neuroprotective activities of heteropolysaccharides extracted from Saccharina japonica. Carbohydr. Polym. 97, 116-120.   DOI
39 Jin, W., Zhang, W., Wang, J., Yao, J., Xie, E., Liu, D., Duan, D. and Zhang, Q. (2014) A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species. Int. J. Biol. Macromol. 67, 336-342.   DOI
40 Jin, W., Zhang, W., Wang, J. and Zhang, Q. (2013b) The neuroprotective activities and antioxidant activities of the polysaccharides from Saccharina japonica. Int. J. Biol. Macromol. 58, 240-244.   DOI
41 Kim, K. J., Yoon, K. Y. and Lee, B. Y. (2012) Low molecular weight fucoidan from the sporophyll of Undaria pinnatifida suppresses inflammation by promoting the inhibition of mitogen-activated protein kinases and oxidative stress in RAW264.7 cells. Fitoterapia 83, 1628-1635.   DOI
42 Kovalska, M., Kovalska, L., Pavlikova, M., Janickova, M., Mikuskova, K., Adamkov, M., Kaplan, P., Tatarkova, Z. and Lehotsky, J. (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem. Res. 37, 1568-1577.   DOI
43 Koyanagi, S., Tanigawa, N., Nakagawa, H., Soeda, S. and Shimeno, H. (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem. Pharmacol. 65, 173-179.   DOI
44 Lakhan, S. E., Kirchgessner, A. and Hofer, M. (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J. Transl. Med. 7, 97.   DOI