• Title/Summary/Keyword: Extracellular

Search Result 3,576, Processing Time 0.028 seconds

A Study on the Effects of Sirtuin 1 on Dendritic Outgrowth and Spine Formation and Mechanism in Neuronal Cells (신경세포에서 sirtuin 1이 수상돌기 성장과 가시형성에 미치는 영향 및 기전에 관한 연구)

  • Seo, Mi Kyoung;Kim, Hye Kyeong;Baek, Song Young;Lee, Jung Goo;Urm, Sang-Hwa;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.806-817
    • /
    • 2021
  • Increasing evidence suggests that depression is associated with impairments in neural plasticity. Sirtuin 1 plays an important role in neural plasticity, and the activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling is known to improve neural plasticity. In this study, we aimed to determine whether sirtuin 1 affects dendrite outgrowth and spine formation through mTORC1 signaling. Resveratrol (sirtuin 1 activator; 1 and 10 μM) and sirtinol (sirtuin 1 inhibitor; 1 and 10 μM) were treated in primary cortical culture with and without dexamethasone (500 μM). Levels of sirtuin 1, phospho-extracellular signal regulated protein kinase 1/2 (ERK1/2), phospho-mTORC1, and phospho-p70 ribosomal protein S6 kinase (p70S6K) were evaluated using Western blot analysis. Dendritic outgrowth and spine density were assessed using immunostaining. Resveratrol significantly increased levels of sirtuin 1 expression and phosphorylation of ERK1/2 (a downstream target of sirtuin 1), mTORC1, and p70S6K (a downstream target of mTORC1) in a concentration-dependent manner under dexamethasone conditions. Resveratrol also significantly increased dendritic outgrowth and spine density. Conversely, sirtinol significantly decreased levels of sirtuin 1 expression and phosphorylation of ERK1/2, mTORC1, and p70S6K in a concentration-dependent manner under normal conditions. Moreover, sirtinol significantly decreased dendritic outgrowth and spine density. Consistent with the results of sirtinol, sirtuin 1 knockdown using sirtuin 1 siRNA transfection significantly decreased dendritic outgrowth and spine density as well as phosphorylation levels of ERK1/2 and mTORC1. These data suggest that sirtuin 1 enhances dendritic outgrowth and spine density by activating mTORC1 signaling.

A Formulated Korean Red Ginseng Extract Inhibited Nitric Oxide Production through Akt- and Mitogen Activated Protein Kinase-dependent Heme Oxygenase-1 Upregulation in Lipoteichoic Acid-stimulated Microglial Cells (홍삼추출액은 lipoteichoic acid로 자극된 소교세포에서 Akt 및 MAPK 의존적으로 heme oxygenase-1 발현을 유도함으로써 NO 생성을 억제함)

  • Shin, Ji Eun;Lee, Kyungmin;Kim, Ji-Hee;Madhi, Iskander;Kim, YoungHee
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.402-409
    • /
    • 2019
  • Korean red ginseng made from steaming and drying fresh ginseng has long been used as a traditional herbal medicine due to its effects on the immune, endocrine, and central nerve systems and its anti-inflammatory activity. In this study, we investigated the molecular mechanism responsible for the anti-inflammatory effects of a formulated Korean red ginseng extract (RGE) in response to lipoteichoic acid (LTA), a cell wall component of gram-positive bacteria. RGE inhibited LTA-induced nitric oxide (NO) secretion and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells, without affecting cell viability. RGE also inhibited nuclear translocation of nuclear factor kappa B ($NF-{\kappa}B$) p65 and degradation of $I{\kappa}B-{\alpha}$. In addition, RGE increased the expression of heme oxygenase-1 (HO-1) in a dose-dependent manner, and the inhibitory effect of RGE on iNOS expression was abrogated by small interfering RNA-mediated knockdown of HO-1. Moreover, RGE induced nuclear translocation of nuclear factor E2-related factor 2 (Nrf2), a transcription factor that regulates HO-1 expression. Furthermore, the phosphoinositide-3-kinase (PI-3K) inhibitor and mitogen-activated protein kinase (MAPK) inhibitors suppressed RGE-mediated expression of HO-1, and RGE enhanced the phosphorylation of Akt, extracellular signal-regulated kinases (ERKs), p38, and c-JUN N-terminal kinases (JNKs). These results suggested that RGE suppressed the production of NO, a proinflammatory mediator, by inducing HO-1 expression via PI-3K/Akt- and MAPK-dependent signaling in LTA-stimulated microglia. The findings indicate that RGE could be used for the treatment of neuroinflammation induced by grampositive bacteria and that it may have therapeutic potential for various neuroinflammation-associated disorders.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Physiological Activity of Supercritical Poria cocos back Extract and Its Skin Delivery Application using Epidermal Penetrating Peptide (초임계 복령피 추출물의 생리활성 및 경피투과 펩티드를 이용한 경피 약물전달의 응용)

  • Kim, Min Gi;Park, Su In;An, Gyu Min;Heo, Soo Hyeon;Shin, Moon Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.766-778
    • /
    • 2019
  • In this study, Poria cocos bark were extracted by supercritical process, and anti-inflammatory, whitening, and antioxidant effects were measured in comparison with ethanol extract. Also, An effective percutaneous permeation method using a selected formulation of the extract and a drug delivery peptide was proposed. Pachymic acid, known as the anti-cancer and anti-inflammatory compound of the ventricle, is an indicator component and the HPLC analysis shows that the supercritical extract of the pericardium is more than twice that of the Poria cocos bark extract. In order to confirm antioxidative effect of Bombyx mori, DPPH scavenging ability and ABTS scavenging ability test showed that the ethanol extract of Poria cocos Back had lower concentration than the supercritical extract of Poria cocos back. However, RAW 264.7 Measurements of Nitric oxide (NO) production in cells showed lower NO production at the same concentration than the Poria cocos back ethanol extract. In addition, after 72 hours of processing of $20{\mu}g/mL$ of the Poria cocos back extract in B16 melanoma cells, both the intracellular and extracellular melanin extract were effective and the supercritical extract was lower melanin content. No toxicity was observed at the concentration of $800{\mu}g/mL$ in RAW 264.7 cells used in NO production experiments. However, in B16 melanoma cells, even at $50{\mu}g/mL$, both Poria cocos back ethanol extract and supercritical extract showed a survival rate of less than 60%. The liposome formulation and drug delivery peptides were shown to be useful for percutaneous permeation of Supercritical Extract of Poria cocos back using a liposome formulation and a drug delivery peptide. it is expected that there will be great potential for development as a variety of cosmetic materials for Poria cocos back.

Antiadipogenic Activity of Solvent-partitioned Fractions from Limonium tetragonum in 3T3-L1 Preadipocytes (갯질경이 용매분획물의 3T3-L1전지방세포에서의 지방생성억제 효과)

  • Kwon, Myeong Sook;Kim, Jung-Ae;Oh, Jung Hwan;Karadeniz, Fatih;Lee, Jung Im;Seo, Youngwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.60-68
    • /
    • 2019
  • Limonium tetragonum, an edible halophyte that grows on salt marshes in Korea, is thought to possess various health benefits (e.g., antioxidant, antitumor, and hepatoprotective). In the present study, different solvent partitioned subfractions, water ($H_2O$), buthanol (n-BuOH), 85% aqueous methanol (85% aq. MeOH), and hexane (n-hexane), from crude extract of L. tetragonum were tested for their ability to prevent adipogenesis in differentiating 3T3-L1 preadipocytes. The treatment of differentiating 3T3-L1 preadipocytes with L. tetragonum subfractions (LTFs) resulted in suppressed adipogenesis and reduced expression of adipogenesis-related transcription factors such as peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), CCAATT/enhancer-binding protein alpha ($C/EBP{\alpha}$), and sterol regulatory element-binding protein 1c (SREBP-1c) at both mRNA and protein levels. In addition, the LTF treatment notably decreased the levels of phosphorylated p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) of the mitogen-activated protein kinase (MAPK) pathway in association with $PPAR{\gamma}$-linked adipogenesis. Among all the tested LTFs, $H_2O$ and n-hexane were the most effective in lowering lipid accumulation and regulating the adipocyte differentiation via $PPAR{\gamma}$ pathway. Taken together, the results indicated that the $H_2O$ and n-hexane LTFs contain bioactive compounds that may exhibit significant antiadipogenesis activity by downregulation of the $PPAR{\gamma}$ pathway and inactivation of the MAPK signal pathway in 3T3-L1 preadipocytes.

A Study on the Whitening Effect of Erigeron annuus (L.) Pers. Ethanol Extract on Melanoma Cell (B16F10) (멜라노마 세포(B16F10)에서의 개망초 추출물을 이용한 미백효과에 관한 연구)

  • Joo, Da-Hye;Yoo, Dan-Hee;Lee, Jin-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.148-157
    • /
    • 2019
  • A 70% ethanol extract of Erigeron annuus (L.) Pers. was investigated for its whitening activity for application as a functional ingredient in cosmetic products. At the E. annuus extract concentration of $100{\mu}g/ml$, the electron-donating ability was found to be 67.83%, the tyrosinase inhibitory effect (related to skin-whitening) was 69%, the elastase inhibitory effect (related to skin-wrinkling) was 69%, and the astringent effect was 80%. The $ABTS^+$ radical-scavenging ability was 87% at the $500{\mu}g/ml$ concentration. In the cell viability test measured on melanoma cells, 96% of the cells treated with $100{\mu}g/ml$ of the extract were viable. According to the western blot results, the protein expression of the microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 was decreased by 60.22%, 47.83%, 54.79%, and 67.88%, respectively, at the extract concentration of $100{\mu}g/ml$. The protein expression of phosphorylated extracellular signal regulated kinase (p-ERK) and phosphorylated cAMP response element-binding protein (p-CREB) was decreased with increasing concentrations of the extract. Reverse transcription-polymerase chain reaction of the extract showed that the mRNA expression of MITF, tyrosinase, TRP-1, and TRP-2 was decreased by 86.51%, 85.22%, 74.26%, and 66.66%, respectively, at $100{\mu}g/ml$ extract concentration. The findings suggest that the 70% ethanol extract from E. annuus (L.) Pers. has potential as a cosmeceutical ingredient with whitening effect.

Effects of 2-methoxy-1,4-naphthoquinone (MQ) on MCP-1 Induced THP-1 Migration (MCP-1에 의해 유도된 THP-1 유주에 미치는 2-methoxy-1,4-naphthoquinone (MQ)의 영향)

  • Kim, Si Hyun;Park, Bo Bin;Hong, Sung Eun;Ryu, Sung Ryul;Lee, Jang Ho;Kim, Sa Hyun;Lee, Pyeongjae;Cho, Eun-Kyung;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.245-251
    • /
    • 2019
  • This study examined the effects of 2-methoxy-1,4-naphthoquinone (MQ) on the monocyte chemoattractant protein-1 (MCP-1)-induced migration of monocytes, which is an important phenomenon for the body defense and immune response. MQ is a major component extracted from Impatiens balsamina leaves, which have been used for many years in Asian medicine for the treatment of a range of diseases and pain. The cytotoxicity of MQ began to appear at a concentration of $10{\mu}M$, and approximately 50% cytotoxicity was confirmed at $100{\mu}M$. The MCP-1 induced migration of the THP-1 monocyte cell line increased after MQ treatment in a dose dependent manner and the largest increase was observed at $0.1{\mu}M$. The level of cAMP expression decreased after a treatment with $0.1{\mu}M$ MQ. The phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2), a key signaling protein involved in the signaling pathway of C-C motif chemokine receptor 2 (CCR2), a receptor for MCP-1, was increased by the simultaneous treatment of $0.1{\mu}M$ MQ. These results show that MQ increases the MCP-1-induced migration of THP-1, decreases the level of cAMP expression, and increases the level of Erk1/2 phosphorylation.

Characterization of Agarase from a Marine Bacterium Agarivorans sp. BK-1 (해양세균 Agarivorans sp. BK-1의 분리 및 β-아가라제의 특성 규명)

  • Ahn, Byeong-Ki;Min, Kyung-Cheol;Lee, Dong-Geun;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1173-1178
    • /
    • 2019
  • The purpose of this study was to isolate an agar-degrading marine bacterium and characterize its agarase. Bacterium BK-1, from Gwanganri Beach at Busan, Korea, was isolated on Marine 2216 agar medium and identified as Agarivorans sp. BK-1 by 16S rRNA gene sequencing. The extracellular agarase, characterized after dialysis of culture broth, showed maximum activity at pH 6.0 and $50^{\circ}C$ in 20 mM Tris-HCl buffer. Relative activities at 20, 30, 40, 50, 60, and $70^{\circ}C$ were 67, 93, 97, 100, 58, and 52%, respectively. Relative activities at pH 5, 6, 7, and 8 were 59, 100, 95, and 91%, respectively. More than 90% of the activity remained after a 2 hr exposure to 20, 30, or $40^{\circ}C$; about 60% of the activity remained after a 2 hr exposure to $50^{\circ}C$. Almost all activity was lost after exposure to 60 or $70^{\circ}C$ for 30 min. Zymography revealed three agarases with molecular weights of 110, 90, and 55 kDa. Agarose was degraded to neoagarobiose (46.8%), neoagarotetraose (39.7%), and neoagarohexaose (13.5%), confirming the agarase of Agarivorans sp. BK-1 as a ${\beta}$-agarase. The neoagarooligosaccharides generated by this agarase could be used for moisturizing, bacterial growth inhibition, skin whitening, food treatments, cosmetics, and delaying starch degradation.

Steap4 Stimulates Adipocyte Differentiation through Activation of Mitotic Clonal Expansion and Regulation of Early Adipogenic Factors (Steap4에 의한 지방세포분화 촉진 기전)

  • Sim, Hyun A;Shin, Jooyeon;Kim, Ji-Hyun;Jung, Myeong Ho
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1092-1100
    • /
    • 2020
  • The six-transmembrane epithelial antigen of prostate 4 (Steap4) is a metalloreductase that plays a role in intracellular iron and cupper homeostasis, inflammatory response, and glucose and lipid metabolism. Previously, Steap4 has been reported to stimulate adipocyte differentiation; however, the underlying mechanisms of this action remain unexplored. In the present study, we investigated the molecular mechanisms involved in Steap4-induced adipocyte differentiation using 3T3-L1 cells, immortalized brown adipocyte (iBA) cells, and mouse embryonic fibroblast C3H10T1/2 cells. The knockdown of Steap4 using adenovirus-containing shRNA attenuated mitotic clonal expansion (MCE), as evidenced by the impaired proliferation of 3T3-L1 cells, iBA cells, and C3H10T1/2 cells within 48 hr after adding the differentiation medium. Steap4 knockdown downregulated G1/S phase transition-related cell cycle regulators (including cyclin A and cyclin D) and upregulated cell cycle inhibitors (including p21 and p27). Furthermore, Steap4 knockdown inhibited the phosphorylation of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and Akt. Moreover, Steap4 knockdown repressed the expression of early adipogenic activators, such as CCAAT-enhancer-binding protein β (C/EBPβ) and Kruppel-like factor family factor 4 (KLF4). On the other hand, Steap4 knockdown stimulated the expression of adipogenic inhibitors, including KLF2, KLF3, and GATA2. The overexpression of Steap4 using an adenovirus removed the repressive histone marks H3K9me2 and H3K9me3 on the promoter of C/EBPβ. These results indicate that Stepa4 stimulates adipocyte differentiation through the induction of MCE and the modulation of early adipogenic transcription factors, including C/EBPβ, during the early phase of adipocyte differentiation.

Anti-inflammatory Effects of Hemistepta lyrata Bunge in LPS-stimulated RAW 264.7 Cells through Regulation of MAPK Signaling Pathway (LPS로 유도된 RAW 264.7 대식세포의 염증반응에서 MAPK 신호경로 조절을 통한 지칭개 에탄올 추출물의 항염증 효과)

  • Kim, Chul Hwan;Lee, Young-Kyung;Jeong, Jin-Woo;Hwang, Buyng Su;Jeong, Yong Tae;Oh, Yong Taek;Cho, Pyo Yun;Kang, Chang-Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Hemistepta lyrata Bunge (HL) has been used as a folk remedy to treat cancer, inflammation, bleeding, hemorrhoids and fever, and leaves and young shoots have been used as famine food. Nevertheless, the biological activities and underlying mechanisms of the anti-inflammatory effects remain unclear. In this study, it was undertaken to explore the functions of the aerial part of HL as a suppressor of inflammation by using RAW 264.7 cells. As immune response parameters, the productions of as nitric oxide (NO) and prostaglandin E2 (PGE2), cytokines such tumor necrotic factor (TNF)-α and interleukin (IL)-6 were evaluated. Although the release of TNF-α remained unchanged in HL-treated RAW 264.7 cells, the productions of NO, PGE2 and IL-6 were significantly increased at concentrations with no cytotoxicity. Furthermore, HL significantly attenuated the mitogen-activated protein kinases (MAPK) pathway including decreasing the phosphorylation of the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinases. Collectively, this study provides evidence that HL inhibits the production of major pro-inflammatory molecules in LPS-stimulated RAW 264.7 cells via suppression of ERK and P38 MAPK signaling pathways. These findings suggest that the beneficial therapeutic effects of HL may be attributed partly to its ability to modulate immune functions in macrophages.