Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.11.1354

Biosynthesis of Silver Nanoparticles Using Microorganism  

Yoo, Ji-Yeon (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Jang, Eun-Young (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Hong, Chang-Oh (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Kim, Keun-Ki (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Park, Hyean-Cheal (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Lee, Sang-Mong (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Kim, Young-Gyun (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, Life and Industry Convergence Research Institute, Pusan National University)
Publication Information
Journal of Life Science / v.28, no.11, 2018 , pp. 1354-1360 More about this Journal
Abstract
The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.
Keywords
Antimicrobial activity; Bacillus thuringiensis; biosynthesis; silver nanoparticles;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Anthony, K. J. P., Murugan, M., Jeyaraj, M., Rathinam, N., K. and Sangiliyandi, G. 2014. Synthesis of silver nanoparticles using pine mushroom extract: A potential antimicrobial agent against E. coli and B. subtilis. J. Ind. Eng. Chem. 20, 2325-2331.   DOI
2 Balakumaran, M. D., Ramachandran, R., Balashanmugam, P., Mukeshkumar, D. J. and Kalaichelvan, P. T. 2016. Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol. Res. 182, 8-10.   DOI
3 Bankar, A. V., Joshi, B. S., Kumar, A. R. and Zinjarde, S S. 2010. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B 80, 45-50.   DOI
4 Dhoondia, Z. H. and Chakraborty, H. 2013. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater. Nanotechnol. 2, 1-7.
5 Eckhardt, S., Brunetto, P. S., Gagnon, J., Priebe, M., Giese, B. and Fromm, K. M. 2013. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev. 113, 4708-4754.   DOI
6 Gopinath, V. and Velusamy, P. 2013. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim. Acta A 106, 170-174.   DOI
7 Faramarzi, M. A. and Sadighi, A. 2013. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv. Colloid Interface Sci. 189-190, 1-20.   DOI
8 Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N. and Rai, M. K. 2008. Exploitation of Aspergillus niger for fabrication of silver nanoparticles. J. Biobased Mater. Bioener. 2, 243-247.   DOI
9 Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A. and Rai, M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382-386.   DOI
10 Harish, B. S., Uppuluri, K. B. and Anbazhagan, V. 2015. Synthesis of fibrinolytic active silver nanoparticle using wheat bran xylan as a reducing and stabilizing agent. Carbohydr. Polym. 132, 104-110.   DOI
11 Holder, I. A. and Boyce, S. T. 1994. Agar well diffusion assay testing of bacterial susceptibility to various antimicrobials in concentrations non-toxic for human cells in culture. Burns 20, 426-429.   DOI
12 Jain, N., Bhargava, A., Majumdar, S., Tarafdarb, J. C. and Panwar, J. 2011. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3, 635-641.   DOI
13 Malaikozhundan, B., Vaseeharan, B., Vijayakumar, S., Sudhakaran, R., Gobi, N. and Shanthini, G. 2016. Antibacterial and antibiofilm assessment of Momordica charantia fruit extract coated silver nanoparticle. Biocatal. Agric. Biotechnol. 8, 189-196.   DOI
14 Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M. and Gurunathan, S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B 65, 150-153.   DOI
15 Kathiravan, V., Ravi, S., Ashokkumar, S., Velmurugan, S., Elumalai, K. and Khatiwada, C. P. 2015. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochim. Acta A 139, 200-205.   DOI
16 Kim, J. C., Kim, M. J., Son, H. S., Ryu, E. Y., Park, G. T., Son, H. J. and Lee, S. J. 2007. Isolation and characterization of a feather-degrading bacterium for recycling of keratinous protein waste. J. Environ. Sci. 12, 1337-1343.
17 Mie, G. 1908. Contribution to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 25, 377-445.
18 Mirzajani, F., Ghassempour, A., Aliahmadi, A. and Esmaeili, M.A. 2011. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Res. Microbiol. 162, 542-540.   DOI
19 Moghimi, S. M., Hunter, A. C. and Murray, J. C. 2006. Nanomedicine: current status and future prospects. FASEB J. 19, 311-330.
20 Nayak, R. R., Pradhan, N., Behera, D., Pradhan, K. M., Mishra, S., Sukla, L. B. and Mishraet, B. K. 2011. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J. Nanopart. Res. 13, 3129-3137   DOI
21 Singh, S., Bharti, S. and Meena, V. K. 2014. Structural, thermal, zeta potential and electrical properties of disaccharide reduced silver nanoparticles. J. Mater. Sci. 25, 3747-3752.
22 Parikh, R. Y., Singh, S., Prasad, B. L. V., Patole, M. S., Sastry, M. and Shouche, Y. S. 2008. Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: Towards understanding biochemical synthesis mechanism. ChemBioChem 9, 1415-1422.   DOI
23 Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S. and Galdiero, M. 2014. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98, 1951-1961.   DOI
24 Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76-83.   DOI
25 Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W. and Boon, N. 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 84, 741-749.   DOI
26 Wei, L., Lu, J., Xu, H., Patel, A., Chen, Z. and Chen, G. 2015. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov. Today 20, 595-601.   DOI
27 Sondi, I. and Salopek-Sondi, B. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177-182.   DOI
28 Thenmozhi, M., Kannabiran, K., Kumar, R. and Khanna, V. G. 2013. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized $Ag_2O/Ag$ nanoparticles against medically important Aspergillus pathogens. J. Mycol. Med. 23, 97-103.   DOI