• Title/Summary/Keyword: External loading

Search Result 561, Processing Time 0.024 seconds

Structural Behavior of Sandwich Type GFRP Arch and Field Applicability (샌드위치형 GFRP 아치의 구조적 거동 및 현장 적용성)

  • Hwang, Dae-Won;Kim, Kwang-Woo;Kim, Yong-Seong;Yeon, Kyu-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.85-93
    • /
    • 2018
  • This study investigated the structural behavior and field applicability of sandwich type GFRP arches with polymer mortar in core. As a result, in case of crack loading and failure loading, total strains at crown were the highest; the fracture strain at crown was 0.01690, which is 4.2 times greater than the fracture strain (0.004) of cement concrete. The 3 % deflection load was 17.42 kN, the flexural strength was $163.98{\times}10^{-3}GPa$, and the flexural elastic modulus was 11.884 GPa. From load-deflection relationship up to 3.5 % deflection, 3D analysis results and experimental values were observed to be almost identical. It was considered reasonable to set a deflection rate limit to be 3 % for structural safety purpose. The standard external flexural strength of semicircular arch used in this study was approximately 2.64 times higher than that of hume pipe (2 type standard) and tripled composite pipe. The external pressure strength at fracture was approximately 1.57 times higher than that of hume pipe. It was confirmed that the implementing semicircular arch had mechanically more advantage than the circular pipe. Optimum member thickness was 8~53 mm according to arch radius of 450~1,800 mm and cover depth of 2~10 m. It was found that the larger strength could be obtained even if the thickness of member was smaller than that of concrete structure. In field application study, figures and equations were derived for obtaining applicable cover depth and optimum member thickness according to loading conditions. These would be useful data for design and manufacture of sandwich type semicircular arch.

Surface Changes between Implant and Zircoina Abutment after Loading (하중 후 임프란트와 지르코니아 지대주 사이의 표면 변화)

  • Kim, Moon-Soo;Cho, Young-Bum;Kim, Hee-Jung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.185-195
    • /
    • 2011
  • In this study, titanium abutments and zirconia abutments were connected to each implant in external type implants. After that they were loaded 10000 times with 20Kg as occlusal force. The surface changes of external hexgon part and platform were observed in FESEM image. Viker's hardness of an implant, a titanium abutment and a zirconia abutment were measured respectively. 1. Viker's hardness of an implants, a titanium abutment and a zirconia abutment was $309.80{\pm}11.78$ HV, $318.40{\pm}11.82$ HV, and $1495.30{\pm}16.21$ HV respectively. There was no statistical significance between an implant and a titanium abutment (P>0.05, Anova). However, there was statistical significance between an implant and a zirconia abutment(P<0.05, Anova). 2. The wear was observed at the joint of implant and abutment in both a titanium abutment group and a zirconia abutment group after loading 10,000 times. The zirconia abutment showed more remarkable wear than the titanium one. In conclusion, the wear of external hexagon and platform was much more notable in a zirconia abutment group than a titanium one. It was suggested that it could result from the difference of surface hardness between titanium and zirconia. The wear of junction between an implant and a zirconia abutment becomes more severe, the connection of an implant and an abutment is much more unfit. This is likely to cause loosening and fracture of the abutment screw. so it is considered that the possibility of implant supra-structure failure can be increased.

Static Modeling of a Miniaturized Continuum Robot for Surgical Interventions and Displacement Analysis under Lateral External Loads (중재 시술 적용을 위한 소형 연속체 로봇의 정역학 모델링 및 외부 측면 하중에 의한 변위 분석)

  • Kim, Kiyoung;Woo, Hyunsoo;Cho, Jangho;Shin, Minki;Suh, Jungwook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.301-308
    • /
    • 2020
  • In this paper, we deal with the static modeling of a continuum robot that can perform surgical interventions. The proposed continuum robot is made of stainless steel wires and a multi lumen flexible tube using a thermoplastic elastomer. This continuum robot could be most severely deformed in physical contact with narrow external environments, when a lateral external force acts at the distal tip of the continuum robot. In order to predict the shape and displacement under the lateral external force loading, the forward kinematics, the statics modeling, the force-moment equilibrium equation, and the virtual work-energy method of the continuum robot are described. The deflection displacements were calculated using the virtual work-energy method, and the results were compared with the displacement obtained by the conventional cantilever beam theories. In conclusion, the proposed static modeling and the virtual work-energy method can be used in arrhythmia procedure simulations.

Active Vibration Control of a Simply Supported Plate with Piezoelectric Sensors and Actuators - I. Theory (압전 센서와 액츄에이터를 이용한 단순지지 평판의 능동 진동제어 - I. 이론)

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.25-39
    • /
    • 1992
  • Undesired vibratory motion of a simply supported plate is controlled with piezoelectric sensors and actuators. Appropriate dynamic equations of the sensor and actuator are derived and coupled with the dynamic equation of the plate for the construction of an active feedback vibration control system. Analytic solutions are obtained for amplitude response of the plate, reflecting the combined effect of external driving forces and piezoelectric control moments. Numerical examples are presented to illustrate the effectiveness of this approach for two types of external forces, i.e. a concentrated point load and a piezoelectric plate driver. Calculation results show that the sensors and actuators can be efficient tools to mitigate the sensitivity of the structure to external sources of vibration. The method investigated in this work is applicable to arbitrary external loading conditions and control algorithms.

  • PDF

A Study on Referents and Inputs in Pay Comparisons (임금비교에 있어서 비교대상 및 비교기준에 관한 연구)

  • Hong, Kwang-Hoon
    • Management & Information Systems Review
    • /
    • v.19
    • /
    • pp.223-241
    • /
    • 2006
  • This study has two purposes. One is to systematize a number of referents and to examine the types of comparisons. The other is to examine categories of comparative standards such as inputs in equity theory. In pay comparison process, referents and inputs are very important elements. The first factor analysis is related to referents, which include 18 variables in 6 categories were subjected to factor analysis. 3 factors emerge with an eigenvalue of 1.0 or greater. Factor I, economic need, includes referents in personal worth and system referent. Factor II, market comparison, includes internal and external referents except one variable(external-peer). Between internal and external referents is not distinguished. This result is corresponded with Hills'(1980) and Hong's(1995) findings. FactorIII is named 'historical/social comparisons'. 14 inputs are subjected to the second factor analysis. 3 factors emerge with an eigenvalue of 1.0 or greater. The 5 variables loading on factor I, equity standard, are responsibility, competency, effort, outcome, and skill. FactorII, equality standard, includes age, gender, and education. FactorIII, seniority standard, includes career and company tenure. All the factors are positively associated with each other. Especially, personal worth is associated with equity standard(r=0.50466). Internal and external referents are associated with any comparative standard.

  • PDF

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

Experimental and theoretical studies on SHS column connection with external stiffening ring under static tension load

  • Rong, Bin;You, Guangchao;Zhang, Ruoyu;Ma, Xu;Quan, Xinxin
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.167-177
    • /
    • 2018
  • In order to investigate mechanical properties in the core area of Square Hollow Section(SHS) column connection with external stiffening ring, four specimens were tested under the static tension load. The failure modes, load-displacement curves and strain distribution were analyzed to study the mechanical properties and the load transfer mechanism of the core area of connections. The connections behave good ductility and load-bearing capacity under the static tension load. Parametric analysis was also conducted, in which the thickness of steel tube, extended width and thickness of the stiffening ring were considered as the parameters to investigate the effects on mechanical properties of the connections. Based on the experimental results, an analytical method for the bearing capacity of connection with external stiffening ring under the static tension load was proposed. The theoretical results and the experimental results are in good agreement, which indicates that the theoretical calculation method of the bearing capacity is advisable.

Evaluating performance of the post-tensioned tapered steel beams with shape memory alloy tendons

  • Hosseinnejad, Hossein;Lotfollahi-Yaghin, Mohammad Ali;Hosseinzadeh, Yousef;Maleki, Ahmad
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • The external post-tension technique is one of the best strengthening methods for reinforcement and improvement of the various steel structures and substructure components such as beams. In the present work, the load carrying capacity of the post-tensioned tapered steel beams with external shape memory alloy (SMA) tendons are studied. 3D nonlinear finite element method with ABAQUS software is used to determine the effects of the increase in the flexural strength, and the improvement of the load carrying capacity. The effect of the different parameters, such as geometrical characteristics and the post-tension force applied to the tendons are also studied in this research. The results reveal that the external post-tension with SMA tendons in comparison with the steel tendons causes a significant improvement of the loading capacity. According to this, using SMA tendon for the reinforcement of the tapered beams causes a decrease in weight of these structures and as a consequence causes economic benefits for their application. This method can be used extensively for steel beams due to low executive costs and simplicity of the operation for post-tension.

Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향)

  • Park, Jae-Kyoung;Jeong, Chang-Mo;Jeon, Young-Chan;Yoon, Ji-Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.