Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening

임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향

  • Park, Jae-Kyoung (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Dentistry, Graduate School, Pusan National University) ;
  • Jeon, Young-Chan (Department of Dentistry, Graduate School, Pusan National University) ;
  • Yoon, Ji-Hoon (Osstem Implant Research Center)
  • 박재경 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실) ;
  • 윤지훈 (오스템 임플랜트 연구소)
  • Published : 2008.04.30

Abstract

Statement of problem: Dental implant procedure has been recognized as a very effective treatment to rehabilitate fully or partially edentulous patients. However, mechanical failures such as screw loosening, screw fracture have been still reported frequently. Purpose: The purpose of this study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on implant-abutment screw loosening of three different joint connections after one million cyclic loading. Material and methods: The values of detorque before and after loading were measured in three different joint connections (Osstem Implant, Korea), one external butt joint, US II implant system and two internal cones, SS II and GS II system. The values of detorque before loading was analyzed by one-way ANOVA, and two-way ANOVA and Scheffe' test were performed for the value of detorque after loading. Results: 1. The values of initial detorque of tungsten carbide/carbon coated Ti alloy screw were smaller those of Ti alloy screw (P<.01), and there were no differences among implant systems in each screw (P>.05). 2. In comparison of loss rate of detorque value after cyclic loading, US II system was greater than SS II and GS II system but there was no difference between SS II and GS II system (P<.01). 3. Loss rates of detorque value after cyclic loading decreased consistently at tungsten carbide/carbon coated Ti alloy screw comparing with Ti alloy screw in all implant systems (P<.01), and there were no differences among three systems in reduction of loss rates by using tungsten carbide/carbon coated Ti alloy screw (P>.05). Conclusion: Tungsten carbide/carbon coating to increase preload with reduction of friction resistance was a effective way to decrease screw loosening by functional loading.

임플랜트 보철물에서 각 구성 요소를 연결하는 나사 풀림 현상이 흔히 발생하고 있다. 나사 풀림을 최소화하기 위해서 연결 구성 부품 사이의 압축력을 최대로 하는 것이 중요한데, 나사 신장의 허용 한계 내에서 조임회전력을 증가시켜 나사 내부의 인장력 즉 전하중을 극대화하기 위해서는 마찰 계수를 감소시켜 초기 조임회전력의 손실을 최소화해야 한다. 건조 윤활제를 나사 표면에 코팅한 나사들이 전하중을 증가시키고 나사 풀림을 감소시키나 나사의 반복체결에 따른 코팅표면의 마모가 문제점으로 지적되고 있다. 최근 내마모성이 우수하며 동시에 나사의 마찰 저항을 최소화할 수 있는 텅스텐 카바이드/탄소 코팅을 이용한 나사가 임상에 사용되고 있으나 실제적으로 연결부 안정성에 미치는 영향에 관한 연구는 미미한 편이다. 이에 본 연구에서는 external butt joint 형태를 가지는 US II 시스템과 one stage용 8도의 internal cone 연결형태의 SS II 시스템 및 11도의 internal cone 연결형태의 GS II 시스템에서 티타늄 합금 나사의 텅스텐 카바이드/탄소 코팅이 지대주 나사 풀림에 미치는 영향을 알아보기 위하여 100만 회 반복 하중 전후의 풀림회전력 및 상실률을 비교한 결과 다음과 같은 결론을 얻었다. 1. 초기 풀림회전력은 티타늄 합금나사보다 텅스텐 카바이드/탄소 코팅 나사를 사용한 경우 작게 나타났으며 (P<.01), 동일 나사를 사용한 경우에는 임플랜트 시스템 간에 차이가 없었다 (P>.05). 2. 반복하중에 따른 풀림회전력의 상실률은 두 나사 모두에서 external butt joint 형태의 US II 시스템이 internal cone 연결형태의 SS II 와 GS II 시스템 보다 크게 나타났으나, SS II 와 GS II 시스템 사이에는 차이를 보이지 않았다 (P<.01). 3. 텅스텐 카바이드/탄소 코팅 나사를 사용한 경우 티타늄 합금 나사에 비해 모든 시스템에서 반복하중 후 풀림회전력 상실률이 작게 나타났으며 (P<.01), 코팅 나사 사용으로 인한 상실률의 감소차는 임플랜트 시스템 간에 차이를 보이지 않았다 (P>.05).

Keywords

References

  1. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent 1983;50:399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  2. Jemt T. Multicenter study of overdentures supported by Branemark. Int J Oral Maxillofac Implants 1992;7:513-22
  3. Jemt T, Laney WR, Harris D, Henry PJ, Krogh PH Jr, Polizzi G, Zarb GA, Herrmann I. Osseointegrated implants for single tooth replacement: a 1-year report from a multicenter prospective study. Int J Oral Maxillofac Implants 1991;6;29-36
  4. Anderson B, Odman P, Lindvall AM, Lithner B. Singletooth restorations supported by osseointegrated implants: results and experiences from a prospective study after 2 to 3 years. Int J Oral Maxillofac Implants 1995;10:702-11
  5. Binon PP, Sutter F, Beaty K, Brunski J, Gulbransen H, Weiner R. The role of screws in implant systems. Int J Oral Maxillofac Implants 1994;9:48-63
  6. McGlumphy EA, Mendel DA, Holloway JA. Implant Screw Mechanics. Dent Clinics North Am 1998;42:71-89
  7. Rangert B, Jemt T, Jorneus L. Forces and Moments on Branemark Implants. Int J Oral Maxillofac Implants 1989;4:241-7
  8. Burguete RL, Johns RB, Patterson EA, King T. Tightening characteristics for screwed joints in the osseointegrated dental implants. J Prosthet Dent 1994;71:592-5 https://doi.org/10.1016/0022-3913(94)90443-X
  9. Wiskott HW, Pavone AF, Scherrer SS, Renevey RR, Belser UC. Resistance of ITI implant connectors to multivectorial fatigue load application. Int J Prosthodont 2004;17:672-9
  10. Motosch N. Development of design charts for bolts preloaded up to the plastic range. J Eng Ind 1976;98:849-51 https://doi.org/10.1115/1.3439041
  11. Robb TT, Porter SS. Increasing implant-abutment preload by thin gold coating abutment screws [abstract 1642]. J Dent Res 1998;77:837
  12. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-9
  13. Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent 2001;86:24-32 https://doi.org/10.1067/mpr.2001.116230
  14. Binon PP. Implants and components. Int J Oral Maxillofac Implants 2000;15:633-45
  15. Liu Y, Gubisch M, Hild W, Scherge M, Spiess L, Knedlik Ch, Schaefer JA. Nanoscale multilayer WC/C coatings developed for nanopositioning. part ii: Friction and wear. Thin Solid Films 2005;488:140-8 https://doi.org/10.1016/j.tsf.2005.03.020
  16. Choi JU, Jeong CM, Jeon YC, Lim JS, Jeong HC, Eom TG. Influence of tungsten carbide/carbon coating on the preload of implant abutment screws. J Korean Acad Prosthodon 2006;44:229-42
  17. Shin HM, Jeong CM, Jeon YC, Jeong HC, Eom TG. Influence of tightening torque on implant-abutment screw joint stability. [MS dissertation.] Korea: Pusan National University; 2007
  18. Siamos G, Winkler S, Boberick KG. The relationship between implant preload and screw loosening on implantsupported restorations. J Oral Implantol 2002;28:67-73 https://doi.org/10.1563/1548-1336(2002)028<0067:TRBIPA>2.3.CO;2
  19. ISO/FDIS 14801 Dentistry - Fatigue test for endosseous dental implants, International Organization for Standardization, 2003(E)
  20. Mericske-Stern R, Zarb GA. In vivo measurements of some functional aspects with mandibular fixed prostheses supported by implants. Clin Oral Implants Res 1996;7:153-61 https://doi.org/10.1034/j.1600-0501.1996.070209.x
  21. Richter EJ. In vivo vertical forces on implants. Int J Oral Maxillofac Implants 1995;10:99-108
  22. Mohl ND, Zarb GA, Carlsson GE, Rugh JD. A Textbook of Occlusion. Chicago: Quintessence; 1988:143-52
  23. Wiskott HW, Nicholls JI, Belser UC. Stress fatigue: basic principles and prosthodontic implications. Int J Prosthodont 1995;8:105-16
  24. Pang W, Man HC, Yue TM. Laser surface coating of Mo- C metal matrix composite on Ti6Al4V alloy. Mat Sci Eng A 2005;390:144-53 https://doi.org/10.1016/j.msea.2004.07.065
  25. Saenger R, Martin D, Gabrielli C. Electrochemical characterization of plasma sprayed WC-CO coatings by imped- ance techniques. Surf Coat Technol 2005;194:335-43 https://doi.org/10.1016/j.surfcoat.2004.08.187
  26. Kirkwood WF, Feng WW, Scott RG, Streit RD, Goldberg A. Mechanical properties and science of engineering materials. In: Blake A[ed]. Handbook of Mechanics, Materials, and Structures. London: Wiley, 1985:320-8
  27. Leempoel PJB, Van't Hof MA, De Haan AFJ. Survival studies of restorations: Criteria, methods and analyses. J Oral Rehabil 1989;16:387-94 https://doi.org/10.1111/j.1365-2842.1989.tb01355.x
  28. Merz BR, Hunenbart S, Belser UC. Mechanics of the implant- abutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26
  29. Cibirka RM, Nelson SK, Lang BR, Rueggeberg FA. Exanination of the implant-abutment interface after fatigue testing. J Prosthet Dent 2001;85:268-75 https://doi.org/10.1067/mpr.2001.114266
  30. Binon PP. Evaluation of machining accuracy and consistency of selected implants, standard abutments, and laboratory analogs. Int J Prosthodont 1995;8:162-78
  31. Schwarz MS. Mechanical complications of dental implants. Clin Oral Impl Res 2000;11:156-8 https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  32. Griffith HT. Suggested tightening torques for structural bolts. Fastener Technology/February 1987. In: Torque Tensioning: A Ten Part Complication. Stow, OH: Fastener Technology, Jan-Dec 1987
  33. Sutter F, Weber HP, Sorensen J, Belser U. The new restorative concept of the ITI dental implant system: design and engineering. Int J Periodont Rest Dent 1993;13:409-31
  34. Balfour A, O'Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent 1995;73:36-43 https://doi.org/10.1016/S0022-3913(05)80270-7
  35. Gratton DG, Aquilino SA, Stanford CM. Micromotion and dynamic fatigue properties of the dental implant-abutment interface. J Prosthet Dent 2001;85:47-52 https://doi.org/10.1067/mpr.2001.112796
  36. Weiss EI, Kozak D, Gross MD. Effect of repeated closures on opening torque values in seven abutment-implant systems. J Prosthet Dent 2000;84:194-9 https://doi.org/10.1067/mpr.2000.108069
  37. Alkan I, Sertgoz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent 2004;91:319-25 https://doi.org/10.1016/j.prosdent.2004.01.016
  38. Mollersten L, Lockowandt P, Linden LA. Comparison of strength and failure mode of seven implant systems: An in vitro test. J Prosthet Dent 1997;78:582-91 https://doi.org/10.1016/S0022-3913(97)70009-X
  39. Pattern EA, John RB. Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants. Int J Oral Maxillofac Implants 1992;7:26-34