• Title/Summary/Keyword: External chloride solution

Search Result 22, Processing Time 0.022 seconds

Evaluation on De-Icing Salts Laden Environment of Road in Seoul (제설제에 노출된 서울시내 도로 시설물의 열화 환경 분석)

  • Yoon, In-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • De -icing salts have been used commonly in areas where snow or ice is a seasonal safety hazard for roadway, however, the salts is one of main causes on serious deterioration of road infrastructures in crowded urban city like Seoul. In order to establish maintenance strategy of road infrastructures under de-icing salts laden environment, it is necessary to examine environmental characteristics and its response to the existing facilities. The purpose of this study is to evaluate the deterioration environment of road infrastructures. Additional purpose is to develop a design model and details for durability design of infrastructures under de-icing salts laden environment, considering mainly a build-up rate of surface chlorides. Concentration of external chloride solution and surface chloride content were calculated at the level of average de-icing salts for 5 years, ratio of auxiliary road of 17.5 to 30%, and effective exposure area to snow 50 to 80%. The chloride build-up rate was 0.073 ~ 0.077% / year and the maximum surface chloride content was calculated to be 2.2 ~ 2.31% by concrete wt. This study is expected to be used for establishing integrated strategy of road infrastructures, such as predicting chloride profiles or degree of chemical corrosion to exposure concrete.

Recovery of Copper Powder from MoO3 Leaching Solution (MoO3 침출공정 폐액으로부터 동분말의 회수기술)

  • Hong, Hyun-Seon;Jung, Hang-Chul;Kim, Geun-Hong;Kong, Man-Sik
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.351-357
    • /
    • 2009
  • A two-step recovery method was developed to produce copper powders from copper chloride waste solution as byproducts of MoO$_3$ leaching process. The first step consisted of replacing noble copper ions with external Fe$^{3+}$ ions which were formed by dissolving iron scraps in the copper chloride waste solution. The replaced copper ions were subsequently precipitated as copper powders. The second step was cementation of entire solution mixture to separate (pure) copper powders from aqueous solution of iron chloride. Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRD, SEM-EDS and laser diffraction and scattering methods.Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99% purity and average 1$\sim$2$\mu$m in size.

Skin Humidity Effects of Strontium on Acute Skin Barrier Damage in Hairless Mice (급성 피부장벽파괴 동물모델에 대한 스트론튬의 피부보습효과)

  • Min, Dae-Ki;Kim, Yoon-Bum
    • The Journal of Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.117-133
    • /
    • 2008
  • Objectives : Since ancient times, Koreans have applied medicinal spabaths for treatment of various diseases. The objective of this study was to investigate the effect of strontium, one of the common ingredients of such baths, experimentally on acute skin barrier damage. Materials and Methods : Male hairless mice, average weight 20g, were divided into six groups. Each group consisted of five mice. The first was the normal, non-treated group. The second was the control group with acute skin barrier damage intentionally induced by TS. The third was the Ba-Sr1 group bathed in 1mg/L strontium chloride before and after inducing acute skin barrier damage by TS. The fourth was the Ba-Sr7 group bathed in 7mg/L strontium chloride before and after inducing acute skin barrier damage by TS. The fifth was the Sr1 group bathed in 1mg/L of strontium chloride only after intentionally inducing acute skin barrier damage by TS. The sixth was the Sr7 group bathed in 7mg/L of strontium chloride only after intentionally inducing acute skin barrier damage by TS. External changes of skin, skin erythema level, transepidermal water loss level, and GOT and GPT level of each group were checked immediately before and after TS, 3 hrs, 5 hrs and 24 hrs after inducing acute skin barrier damage. Then, tissue samples were made and examined for damage to epithelial cells, stratum corneum, change of mucous polysaccharide in dermis and amount of mast cells. Statistical analysis was performed by one way-ANOVA, Scheffe and Duncan for a post hoc test and pairwise comparison for comparing for difference between each time. Statistical significance was achieved if the probability was less than 5% (p<0.05) Results : 1. From skin erythema and TEWL level indicating the function of the skin barrier, we can know that it is helpful to the skin barrier to bathe in a water solution including a low concentration of strontium. 2. In the control group with acute skin barrier damage induced by TS, skin barrier damage persisted until 3-5 hrs and recovered after 5-24 hrs. Differently from the control group, in the case of taking a bath in a water solution including strontium, skin barrier damage recovered after only 3-5 hrs. Therefore, the bath with a water solution including strontium can promote recovery of the skin barrier. 3. Bathing in water solution including a higher concentration of strontium was more beneficial to recovery of skin barrier damage. 4. There was no influence on serum GOT and GPT from bathing in a water solution including strontium. Conclusions : The strontium was effective for recovery and mitigation of acute skin barrier damage induced by tape stripping. I suggest that strontium (Sr) can be used as an external treatment medicine, addedinto bath water to treat acute skin barrier damage.

  • PDF

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

Hypsochromic Shifts in Retinochrome Absorption Spectra in the Presence of Nitrate

  • Takemori, Nobuaki;Mizukami, Taku;Tsujimoto, Kazuo
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.264-266
    • /
    • 2002
  • The absorption wavelength of the protonated retinal Schiff base can be controlled by the surrounding environment. An external anion is related to fine adjustment of the absorption wavelength. The addition of anion to retinochrome solution caused blue shift in spectra. The increase of the shift was dependent on the ion concentration. The large shift value was obtained as 20 nm at the saturated concentration of nitrate. The shift intensity for the nitrate addition exceeded that of chloride. Seemingly, it depends on the ionic strength or lyotropic character of the anion. However, neither of sulphate nor gluconate ion showed remarkable blue shift. These phenomena were accounted for with (1) delocalization of the positive charge in the conjugated polyene system, (2) ionic bonding strength between the counter ion (glutamate) and the proton, and/or (3) interaction of the added anion with the proton on Schiff base.

  • PDF

Evaluation of Chloride Extraction under Electrochemical Chloride Extraction (전기화학적 염화물 추출법에 따른 염소이온 제거 성능 평가)

  • Jiseok, Kim;Ki-Yong, Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.553-557
    • /
    • 2022
  • The present study evaluate the chloride extracion under electrochemical chloride extraction method. Chloride was penetrated into the concrete from external reservoir using a 4M NaCl solution, and an electrochemical chloride extraction method was applied after the curing period of 1 year. The current density was constantly kept 1000 mA/m2 for coulostatic application with the variation in potential difference. The duration of the ECE treatment was 2, 4, 8 weeks, respectively. The residual chloride concentration at all depths decreased, and the chloride concentration decreased as the application period increased. After the application period of 8 weeks, 62.9 to 77.6 % of chloride extracted in the total chloride profile, and 77.7 to 99.5 % of chloride extracted in the free chloride profile. In particular, the concentration of free chloride at a depth of 7 mm or more from the concrete surface was 0.01 % or less by cement. In addition, it was confirmed that the bound chloride could be extracted by the electrochemical chloride extraction.

A Study on the Mechanism of Crevice Corrosion for 430 Stainless Steel (430 스테인리스강의 틈부식 발생기구에 대한 연구)

  • 백신영;나은영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.447-452
    • /
    • 2003
  • Crevice corrosion is localized form of corrosion usually associated with a stagnant solution on the micro-environmental level. Such stagnant micro environments tend to occur in crevices (shielded areas) such as those formed under gaskets washers insulation material. fastener heads. surface deposits. disbonded coatings. threads. lap joints and clamps. Crevice corrosion is initiated by changes in located electrochemical reaction within the crevice such as a) depletion of inhibitor in the crevice b) depletion of oxygen in the crevice c) a shift to acid conditions in the crevice and d) build-up of aggressive ion species (e.g chloride) in the crevice. In this study. the mechanism of crevice corrosion for Type 430 stainless steel is investigated undercondition that the size of specimen is $15{\times}20\{times}3mm$, in 1N $H_2SO_4$ + 0.05N NaCl solution. and the artificial crevice gap size of 3 x 0.2 x 15 mm. Crevice corrosion is measured under applied potential -300mV(SCE) to the external surface. The obtained result of this study showed that 1) the induced time for initiation of crevice is 750 seconds. 2) potential of the crevice was about from -320mV to -399mV. which is lower than that of external surface potential of -300mV It is considered that potential drop in the crevice is one of mechanisms for the crevice corrosion

Synthesis and Surface Derivatization of Processible Co Nanoparticles

  • Lee, Jin-Kyu;Choi, Sung-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.32-36
    • /
    • 2003
  • Co nanoparticles were prepared by the reverse micelle technique (NaBH₄reduction of cobalt chloride in a reversed micelle solution of didodecyldimethylammoniumbromide (DDAB)/toluene). The size and the shape of Co nanoparticles could be easily controlled by changing the water contents and micelle concentrations, and the solubility of Co nanoparticles was systematically tuned by choosing appropriate surface capping organic ligand molecules. Furthermore, a novel nanofabrication process was clearly demonstrated, which generated oxide over-coated Co nanorods from Co nanoparticles in organic solution by slow oxidation with an external magnetic field.

Analysis on Adsorption Rate & Mechanism on Chloride Adsorption Behavior with Cement Hydrates (시멘트 수화물의 염소이온 흡착거동에 따른 메커니즘 및 해석기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The chloride ions, responsible for the initiation of the corrosion mechanism, intrude from the external medium into the concrete. A part of the intruding chloride ions will be retained by the hydration products of the binder in concrete, either through chemical adsorption or by physical adsorption. Since the hydration products of cement are responsible for the chloride binding in concrete, this study focused on the chloride binding in individual hydrate. The purpose of this study is to explore the time dependant behaviors of chloride ions adsorption with cement hydrates, focused on its mechanism. AFt phase and CH phase were not able to absorb chloride ion, however, C-S-H phase and AFm phase had a significant chloride adsorption capacity. In particular, AFm phase showed a chemical adsorption with slow rate in 40 days, while C-S-H phase showed binding behaviors with 3 stages including momentary physical adsorption, physico-chemical adsorption, and chemical adsorption. Based on the results, this study suggested theoretical approach to depict chloride adsorption behavior with elapsed time of C-S-H phase and AFm phase effectively. It is believed that the approach suggested in this study can provide us with a good solution to understand the mechanism on chloride adsorption with hydrates and to calculate a rate of chloride penetration with original source of chloride ions, for example, marine sand at initial time or sea water penetration later on.

Development of New Reverse Micellar Microencapsulation Technique to Load Water-Soluble Drug into PLGA Microspheres

  • Kim Hyun Joo;Cho Mi Hyun;Sah Hong Kee
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.370-375
    • /
    • 2005
  • The objective of this study was to develop a new reverse micelle-based microencapsulation technique to load tetracycline hydrochloride into PLGA microspheres. To do so, a reverse micellar system was formulated to dissolve tetracycline hydrochloride and water in ethyl formate with the aid of cetyltrimethylammonium bromide. The resultant micellar solution was used to dissolve 0.3 to 0.75 g of PLGA, and microspheres were prepared following a modified solvent quenching technique. As a control experiment, the drug was encapsulated into PLGA microspheres via a conventional methylene chloride-based emulsion procedure. The micro­spheres were then characterized with regard to drug loading efficiency, their size distribution and morphology. The reverse micellar procedure led to the formation of free-flowing, spherical microspheres with the size mode of 88 ~m. When PLGA microspheres were prepared follow­ing the conventional methylene chloride-based procedure, most of tetracycline hydrochloride leached to the aqueous external phase: A maximal loading efficiency observed our experimental conditions was below $5\%$. Their surfaces had numerous pores, while their internal architecture was honey-combed. In sharp contrast, the new reverse micellar encapsulation technique permitted the attainment of a maximal loading efficiency of 63.19 $\pm$$0.64\%$. Also, the microspheres had smooth and pore-free surfaces, and hollow cavities were absent from their internal matrices. The results of this study demonstrated that PLGA microspheres could be successfully prepared following the new reverse micellar encapsulation technique.