DOI QR코드

DOI QR Code

Evaluation on De-Icing Salts Laden Environment of Road in Seoul

제설제에 노출된 서울시내 도로 시설물의 열화 환경 분석

  • Received : 2021.07.20
  • Accepted : 2021.11.23
  • Published : 2022.02.28

Abstract

De -icing salts have been used commonly in areas where snow or ice is a seasonal safety hazard for roadway, however, the salts is one of main causes on serious deterioration of road infrastructures in crowded urban city like Seoul. In order to establish maintenance strategy of road infrastructures under de-icing salts laden environment, it is necessary to examine environmental characteristics and its response to the existing facilities. The purpose of this study is to evaluate the deterioration environment of road infrastructures. Additional purpose is to develop a design model and details for durability design of infrastructures under de-icing salts laden environment, considering mainly a build-up rate of surface chlorides. Concentration of external chloride solution and surface chloride content were calculated at the level of average de-icing salts for 5 years, ratio of auxiliary road of 17.5 to 30%, and effective exposure area to snow 50 to 80%. The chloride build-up rate was 0.073 ~ 0.077% / year and the maximum surface chloride content was calculated to be 2.2 ~ 2.31% by concrete wt. This study is expected to be used for establishing integrated strategy of road infrastructures, such as predicting chloride profiles or degree of chemical corrosion to exposure concrete.

제설제는 동절기 도로 위의 눈을 녹이기 위하여 사용되고 있으나, 서울과 같은 대도시에서 교통이 밀집한 도로 시설물의 열화를 촉진시키는 주요 요인 중의 하나이다. 도로 시설물의 합리적인 유지관리 전략을 수립하기 위하여 제설제에 노출된 도로 시설물의 환경분석이 필요하다. 본 연구는 서울시의 적설량 및 사용된 제설제량을 토대로 외래 염소농도를 계산하였다. 평균 표면 염소이온량을 구하고자 서울시의 5년간 기후환경 및 제설제 사용량을 이용하였으며, 주간선 및 보조간선율 17.5 ~ 30%, 제설제 노출 유효면적율 50 ~ 80% 수준에서 검토하였는데, 농축 속도는 0.073~ 0.077%/년, 최대 표면 염소이온량은 콘크리트 중량대비 2.2 ~ 2.31% 수준이었다. 본 연구결과는 염소이온 프로파일의 예측 또는 콘크리트 구체의 화학적 부식정도 등으로 종합적인 유지관리 대책을 수립하는데 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 한국연구재단의 지원을 받아 수행되었음(NRF-2018R1D1A1B07042819).

References

  1. ASTM C 672 / 672 M (2012), Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals, ASTM International, West Conshohocken, PA.
  2. Arora, P., Popov, B. N., Haran, B., Ramasubramanian, M., Popova, S., and White, R. E. (1997), Corrosion Initiation Time of Steel Reinforcement in a Chloride Environment - A One Dimensional Solution, Corrosion Science, 39(4), 739-759. https://doi.org/10.1016/S0010-938X(96)00163-1
  3. Bazant, Z. P. (1979), Physical Model for Steel Corrosion in Concrete Sea Structure - Application, Journal of Structure, Div., ASCE, 105(6)1137-1153. https://doi.org/10.1061/JSDEAG.0005168
  4. Berke, N (2013), Environmental Degradation of Reinforced Concrete, Handbook of Environmental Degradation of Materials (eds. Kutz, M.), Third Edition, Elsevier Inc. 3rd Edition.
  5. Berke, N. S., and Hicks, M. C. (1992), The While Life Cycle of Reinforced Concrete Decks and Marine Piles using Laboratory Diffusion and Corrosion Data," In Corrosion Forms and Control for Infrastructures, Chaker, V. (Eds.), ASTM STP 1137, American Society for Testing and Materials, Philadelphia, 207-231.
  6. Bu, Y, Luo, D., Weiss, W. J. (2014), Using Fick's Second Law and Nernst Plank Approach in Predicting of Chloride Ingress in Concrete Materials, Advances in Civil Engineering Materials, 3(1).
  7. CEB Belletin d'Information No.243 (1998), Strategies for Testing and Assessment of Concrete Structures, CEB-FIP, May,142-149.
  8. Farnam, Y., Bentz, D., Hampton, A., and Weiss, W. J. (2015a), Acoustic Emission and Low temperature Calorimetry Study of Freeze and Thaw Behavior in Cementitious Materials Exposed to Sodium Chloride Salts, Transportation Research Record, 2441, 81-90. https://doi.org/10.3141/2441-11
  9. Farnam, Y., Dick, S., Wiese A., Davis, J., Bentz, D., and Weiss, W. J. (2015b), The Influence of Calcium Chloride Deicing Salt on Phase Changes and Damage Development in Cementitious Materials, Cement and Concrete Composites, 64, 1-15. https://doi.org/10.1016/j.cemconcomp.2015.09.006
  10. Greenspan, L. (1997), Humidity Fixed Points of Binary Saturated Aqueous Solutions, Journal of Research of the National Bureau of Stands A: Physics and Chemistry, 81, 89-96.
  11. Henriksen, C., Ladefoged, L., and Thaulow, N. (1996), Concrete Specifications for New Bridges, Bridge Management, 3, Harding, J. E., Parke, G. A. R., and Ryall, M. J. (Eds.), E & FN SPON, 125-137.
  12. Jain, J., Olek, J., Janusz, A., and Jozwiak-Niedzwiedzka, D. (2012), Effects of Deicing Salt Solutions on Physical Properties of Pavement Concretes, Journal of the Transportation Research Board, 2290, Transportation Research Board of the National Academies, 69-75. https://doi.org/10.3141/2290-09
  13. JSCE (1999), Concrete Standard Specification, Part of Durability (in Japanese language).
  14. Kassir, M. K., and Ghosn, M. (2002), Chloride-induced Corrosion of Reinforced Concrete Bridge Decks, Cement and Concrete Research, 32, 139-143. https://doi.org/10.1016/S0008-8846(01)00644-5
  15. Lee, C. S., Yoon, I. S., and Park, J. H. (2003), Prediction of Time to Corrosion for Concrete Bridge Decks Exposed to De-icing Chemicals, Journal of Korea Concrete Institute, 15(4), 610-618.
  16. Life-365 Consortium III (2018), Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Cost of Reinforced Concrete Exposed to Chlorides, Version 2.2.3, 70.
  17. MTO Test Method LS-412 (1997), Method of Test for Scaling Reistance of Cocnrete Surfaces Exposed to Deicing Chemicals, Ministry of Transportation, Ontario.
  18. Nilsson, L.-O, Sandberg, P., Poulsen, E., Tang, L., and Anderson, A. (1997), A System of Estimation of Chloride Ingress into Background, Frederiksen, J. M. (Eds.), HETEK-Report No.83, Danish Road Directorate, Copenhagen.
  19. Peterson, K., Julio-Betancourt, Sutter, L., Hooton, D., Dam, T.V., Johnson, D., (2013), Observations of Chloride Ingress and Calcium Oxychloride Formation in Laboratory Concrete and Mortat at 5 ℃, Cement and Concrete Research, 45(1), 79-90. https://doi.org/10.1016/j.cemconres.2013.01.001
  20. RILEM TC 117-FDC (1996), CDF Test - Test Method for the Freeze-Thaw Resistance of Concrete- Tests with Sodlium Chloride Solution (CDF), prepared by Setzer, M. J., Fagerlund, G., and Janssen, D. J., Materials and Structures, Vol.29, pp.523-528. https://doi.org/10.1007/BF02485951
  21. Seoul Safety General Office (2020), Promotion Results of Snow Remova for 2019/2020, Department of Road Maintenance, Seoul Metropolitan Government, No.4988 (in Korean).
  22. Suraneni, S., Azad, V. J., Isgor, O. B., Weiss, W. J. (2016), Calcium Oxychloride Formation in Paste Containing Supplementary Cementitious materials: Thoughts on the Role of Cement and Supplementary Cementitious Materials Reactivity, RILEM Technical Letters, 1, 24-30. https://doi.org/10.21809/rilemtechlett.2016.7
  23. Svensk Standard SS 13 72 44 (2005), Concrete Testing - Hardened Concrete - Scaling at Freezing, Swedish Standards Institute.
  24. Takeda, N., Sogo, S., Sakoda, S., and Idemitu, T. (1998), An Experimental Study on Penetration of Chloride Ions into Concrete and Corrosion of Reinforcing Bars in Various Marine Environments," Journal of JSCE, 40(599).
  25. Taylor, P., Sutter, L., Weiss, W. J. (2012), Investigation of Deterioration of Joints in Concrete Pavements, Report in Trans Project 09-361.
  26. Troive, S., Optimum of LCC of Concrete Bridges, Royal Institute of Technology, Stockholm, Sweden.
  27. Uji, K., Matsudaka, Y., and Maruya, T. (1990), Formulation of an Equation for Surface Chloride Content of Concrete Due to Permeation of Chloride, Corrosion of Reinforcement in Concrete, Page, C. L., Treadaway, K. W., Page, J. V., and Bamforth, P. B. (Eds.), Elsevier Applied Science, New York, 258-267.
  28. Valenza Il, J. K., Scherer, G. W. (2006), Mechanism for Salt Scaling, Journal of American Ceramic Society, 84(4), 1161-1179. https://doi.org/10.1111/j.1551-2916.2006.00913.x
  29. Van Breugel, K. (1991), Simulation of Hydration and Formation of Structures in Hardening Cement-Based Materials, Ph.D Dissertation, TU Delft, the Netherlands.
  30. Villani, C., Spragg, R., Pour-Ghaz, M., Weiss, W. J. (2014 a), The Influence of Pore Solutions Properties on Drying in Cementitious Materials," Journal of the American Ceramic Society, 97(2), 386-393. https://doi.org/10.1111/jace.12604
  31. Villani, C., Nantung, T. E., Weiss, W. J. (2014 b), The Influence of De-icing Salt Exposure on the Gas Transport in Cementitious Materials, Construction and Building Materials, 67, Part A, 107-114..
  32. Vu, K. A. T., and Stewart M. G. (2000), Structural Reliability of Concrete Bridges including Improved Chloride-induced Corrosion Models, Structure Safety, 22(4), 313-333. https://doi.org/10.1016/S0167-4730(00)00018-7
  33. Weast, R. C., and Astle, M. J. (Eds.) (1982), CRC Handbook of Chemistry and Physics, 63rd, pp.299, CRC Press, Boca Raton, FL, F-154.
  34. Wee, T. H., Wong, S. F., Swaddiwudhipong, S., and Lee, S. L. (1998), A Prediction Method of Long-Term Chloride Concentration Profiles in Hardened Cement Matrix Materials, ACI Materials Journal, 94(6), November-December, 565-576.
  35. Weyers, R. E., Fitch, M. G., Laren, E. P., Al-Quadi, I. L., Chamberlin, W. P., and Hoffman, P. C. (1992), Service Life Estimates, SHRP-S-XXX, SHRP, National Research Council, Washington D. C.
  36. Weyers, R. E., Fitch Michael, G., Larsen Erin, P., Al-Qadi Imad, L., Chamberlin, W. P., and Hoffman, P. C. (1994), Concrete Bridge Protection and Rehabilitation: Chemical and Physical Techniques, Service Life Estimates, SHRP-S-668, Strategic Highway Research Program, Washington, 155-164.
  37. Seoul metropolitan government (2020), (website) http://data.seoul.go.kr/dataList/251/C/2/datasetView.do
  38. Yoon, I. S., and Nam, J. W. (2014), Influence of Chloride Content on Electrical Resistivity in Concrete, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(6), 90-96. https://doi.org/10.11112/JKSMI.2014.18.6.090