DOI QR코드

DOI QR Code

Evaluation of Chloride Extraction under Electrochemical Chloride Extraction

전기화학적 염화물 추출법에 따른 염소이온 제거 성능 평가

  • Jiseok, Kim (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Ki-Yong, Ann (Department of Civil and Environmental System Engineering, Hanyang University)
  • 김지석 (한양대학교 건설환경시스템공학과) ;
  • 안기용 (한양대학교 건설환경공학과)
  • Received : 2022.11.30
  • Accepted : 2022.12.09
  • Published : 2022.12.30

Abstract

The present study evaluate the chloride extracion under electrochemical chloride extraction method. Chloride was penetrated into the concrete from external reservoir using a 4M NaCl solution, and an electrochemical chloride extraction method was applied after the curing period of 1 year. The current density was constantly kept 1000 mA/m2 for coulostatic application with the variation in potential difference. The duration of the ECE treatment was 2, 4, 8 weeks, respectively. The residual chloride concentration at all depths decreased, and the chloride concentration decreased as the application period increased. After the application period of 8 weeks, 62.9 to 77.6 % of chloride extracted in the total chloride profile, and 77.7 to 99.5 % of chloride extracted in the free chloride profile. In particular, the concentration of free chloride at a depth of 7 mm or more from the concrete surface was 0.01 % or less by cement. In addition, it was confirmed that the bound chloride could be extracted by the electrochemical chloride extraction.

본 연구에서는 전기화학적 염화물 추출법에 따른 염소이온 제거 성능을 평가하였다. 4M의 NaCl 수용액을 이용하여 염소이온을 콘크리트 내부로 침투 시켰으며, 1년간의 양생기간이후 전기화학적 염화물 추출법을 적용하였다. 1,000 mA/m2의 전류밀도를 2주, 4주, 8주간 인가하였으며, 2 mm 단위로 총 염소이온과 자유 염소이온을 프로파일 하였다. 전기화학적 염화물 추출법을 적용한 시편에서 모든 깊이에서의 잔존 염화물 농도가 감소하였으며, 적용 기간이 증가함에 따라 염소이온 농도가 감소하였다. 8주간의 적용기간 이후 총 염소이온 프로파일에서 62.9~77.6 %의 염소이온 제거 성능을 나타내었으며, 자유 염소이온 프로파일에서 77.7~99.5 %의 제거 성능을 나타내었다. 특히, 콘크리트 표면으로부터 7 mm 이상의 깊이에서 잔존 자유 염소이온 농도는 시멘트량 대비 0.01 % 이하로 나타났다. 또한 고정화된 염소이온 프로파일을 통하여 전기화학적 염화물 추출법으로 인해 고정화된 염소이온이 제거될 수 있음을 확인하였다.

Keywords

Acknowledgement

이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020R1A2C3012248).

References

  1. Orellan, J.C., Escadeillas, G., Arliguie, G. (2004). Electrochemical chloride extraction: efficiency and side effects, Cement and Concrete Research, 34(2), 227-234. https://doi.org/10.1016/j.cemconres.2003.07.001
  2. Perez, A., Climent, M.A., Garces, P. (2010). Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as the anode, Corrosion science, 52(5), 1576-1581. https://doi.org/10.1016/j.corsci.2010.01.016
  3. Canon, A., Garces, P., Climent, M.A., Carmona, J., Zornoza, E. (2013). Feasibility of electrochemical chloride extraction from structural reinforced concrete using a sprayed conductive graphite powder-cement paste as anode, Corrosion Science, 77, 128-134. https://doi.org/10.1016/j.corsci.2013.07.035
  4. Bouteiller, V., Tissier, Y., Marie-Victoire, E., Chaussadent, T., Joiret, S. (2022). The application of electrochemical chloride extraction to reinforced concrete-a review, Construction and Building Materials, 351, 128931.
  5. Xia, J., Liu, Q.F., Mao, J.H., Qian, Z.H., Jin, S.J., Hu, J.Y., Jin, W.L. (2018). Effect of environmental temperature on efficiency of electrochemical chloride removal from concrete, Construction and Building Materials, 193, 189-195. https://doi.org/10.1016/j.conbuildmat.2018.10.187
  6. de Almeida, S.L.R., de Medeiros, M.H.F., Pereira, E., Capraro, A.P.B. (2017). Electrochemical chloride extraction: efficiency and impact on concrete containing 1 % of NaCl, Construction and Building Materials, 145, 435-444. https://doi.org/10.1016/j.conbuildmat.2017.04.010
  7. Kim, K.B., Hwang, J.P., Ann, K.Y. (2016). Influence of cementitious binder on chloride removal under electrochemical treatment in concrete, Construction and Building Materials, 104, 191-197. https://doi.org/10.1016/j.conbuildmat.2015.12.052
  8. Zhu, J.H., Wei, L., Wang, Z., Liang, C.K., Fang, Y., Xing, F. (2016). Application of carbon-fiber-reinforced polymer anode in electrochemical chloride extraction of steel-reinforced concrete, Construction and Building Materials, 120, 275-283. https://doi.org/10.1016/j.conbuildmat.2016.05.103
  9. Liu, J., Ou, G., Qiu, Q., Xing, F., Tang, K., Zeng, J. (2018). Atmospheric chloride deposition in field concrete at coastal region, Construction and Building Materials, 190, 1015-1022. https://doi.org/10.1016/j.conbuildmat.2018.09.094
  10. Sanchez, M., Alonso, M.C. (2011). Electrochemical chloride removal in reinforced concrete structures: Improvement of effectiveness by simultaneous migration of calcium nitrite, Construction and Building Materials, 25(2), 873-878. https://doi.org/10.1016/j.conbuildmat.2010.06.099
  11. Song, H.W., Lee, C.H., Jung, M.S., Ann, K.Y. (2008). Development of chloride binding capacity in cement pastes and influence of the pH of hydration products, Canadian Journal of Civil Engineering, 35(12), 1427-1434.