DOI QR코드

DOI QR Code

Synthesis and Surface Derivatization of Processible Co Nanoparticles

  • Lee, Jin-Kyu (School of Chemistry and Molecular Engineering, Seoul National University) ;
  • Choi, Sung-Moon (School of Chemistry and Molecular Engineering, Seoul National University)
  • Published : 2003.01.20

Abstract

Co nanoparticles were prepared by the reverse micelle technique (NaBH₄reduction of cobalt chloride in a reversed micelle solution of didodecyldimethylammoniumbromide (DDAB)/toluene). The size and the shape of Co nanoparticles could be easily controlled by changing the water contents and micelle concentrations, and the solubility of Co nanoparticles was systematically tuned by choosing appropriate surface capping organic ligand molecules. Furthermore, a novel nanofabrication process was clearly demonstrated, which generated oxide over-coated Co nanorods from Co nanoparticles in organic solution by slow oxidation with an external magnetic field.

Keywords

References

  1. Yoo, K. S.; Woo, S. B. Bull. Korean Chem. Soc. 2001, 22(10),1141. https://doi.org/10.1063/1.368346
  2. Tiwari, S.; Rana, F.; Hanafi, H.; Hartstein, E.; Crabbe, F.; Chan, K.Appl. Pys. Lett. 1996, 68, 1377. https://doi.org/10.1063/1.116085
  3. Welser, J. J.; Tiwari, S.; Riston, S.; Lee, K. Y.; Lee, Y. IEEEElectron Device Lett. 1997, 18, 278. https://doi.org/10.1109/55.585357
  4. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270,1335. https://doi.org/10.1126/science.270.5240.1335
  5. Carap, S. H.; Lu, P.-L.; He, Y. IEEE Trance Magn. 1997, 33, 978. https://doi.org/10.1109/20.560142
  6. Raj, K.; Moskowitz, R. J. Magn. Magn. Mater. 1990, 85, 233. https://doi.org/10.1016/0304-8853(90)90058-X
  7. Rieke, R. D. Crit. Rev. Surf. Chem. 1999, 1, 131.
  8. Petit, C.; Pilen, M. P. J. Magn. Magn. Mater. 1997, 166, 82. https://doi.org/10.1016/S0304-8853(96)00621-X
  9. Chen, J. P.; Sorensen, C. M.; Klabunde, K. J. Phys. Rev. B 1995,51, 11527. https://doi.org/10.1103/PhysRevB.51.11527
  10. Nagy, J. B.; Barette, D.; Fonseca, A.; Jeunieau, L.; Monnoyer, P.;Piedigrosso, P.; Ravert, I.; Verfaillie, J. P.; Wathelet, A. NATO ASISer., Ser. 3 1996, 18, 71.
  11. Suslick, K. S.; Fang, M.; Hyeon, R.; Cichowlas, A. A. Mater. Res.Soc. Symp. Proc. 1994, 351, 443.
  12. Yin, J. S.; Wang, Z. L. Nanostruct. Mater. 1999, 11, 845. https://doi.org/10.1016/S0965-9773(99)00375-X
  13. Apsel, S. E.; Emmert, J. W.; Deng, J.; Bloomfield, L. A. Phys.Rev. Lett. 1996, 76, 1441. https://doi.org/10.1103/PhysRevLett.76.1441
  14. Bucher, J. P.; Douglass, D. C.; Deng, J.; Bloofield, L. A. Phys.Rev. Lett. 1991, 66, 3052. https://doi.org/10.1103/PhysRevLett.66.3052
  15. Isabelle, M. L.; Billas, J. A.; Berker, J. A.; Chatelain, A.; DeHeer,W. A. Phys. Rev. Lett. 1993, 71, 4067. https://doi.org/10.1103/PhysRevLett.71.4067
  16. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc.1993, 115, 8706. https://doi.org/10.1021/ja00072a025
  17. Motte, L.; Pileni, M. P. Applied Surface Science 2000, 164, 60. https://doi.org/10.1016/S0169-4332(00)00325-1
  18. Prozorov, T.; Kataby, G.; Prozorov, R.; Gedanken, A. Thin SolidFilms 1999, 340, 189. https://doi.org/10.1016/S0040-6090(98)01400-X
  19. Sun, S.; Murray, C. B. J. Appl. Phys. 1999, 85, 4325. https://doi.org/10.1063/1.370357
  20. Lubbe, A. S.; Bergemann, C.; Brock, F.; McClure, D. G. J. Magn.Magn. Mater. 1999, 194, 149. https://doi.org/10.1016/S0304-8853(98)00574-5
  21. Popplewell, J.; Sakihnini, L. J. Magn. Magn. Mater. 1995, 149,72. https://doi.org/10.1016/0304-8853(95)00341-X
  22. Lin, X. M.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C.Langmuir 1998, 14, 7140. https://doi.org/10.1021/la980509w
  23. Armarego, W. L. F.; Perrin, D. D. Purification of LaboratryChemicals, 4th Ed.; Butterworth: Heinemann, 1996.
  24. Yin, J. S.; Wang, Z. L. Nanostruct. Mater. 1999, 11, 845. https://doi.org/10.1016/S0965-9773(99)00375-X
  25. Pileni, M. P. Supramolecular Science 1998, 100, 3.
  26. Kumer, S.; Aswal, V. K.; Singh, H. N.; Goyal, P. S.; Kabir-ud-DinLangmuir 1994, 10, 4069. https://doi.org/10.1021/la00023a027
  27. Zhao, G. X.; Li, X. G. J. Colloid Interface Sci. 1991, 144, 185. https://doi.org/10.1016/0021-9797(91)90249-8
  28. Durga Prasad, Ch.; Singh, H. N.; Goyal, P. S.; Srinivasa Rao, K. L.J. Colloid Interface Sci. 1993, 155, 415. https://doi.org/10.1006/jcis.1993.1055
  29. Reekmans, S.; Luo, H.; van der Auweraer, M.; de Schryver, F. C.Langmuir 1990, 6, 628. https://doi.org/10.1021/la00093a018
  30. Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001,291, 2115. https://doi.org/10.1126/science.1057553
  31. Lisiecki, I.; Billoudet, F.; Pileni, M. P. J. Phys. Chem. 1996, 100,4160. https://doi.org/10.1021/jp9523837
  32. Petit, C.; Taleb, A.; Pileni, M. P. J. Phys. Chem. B 1999, 103,1805. https://doi.org/10.1021/jp982755m
  33. Tornbolom, M.; Herikssen, U. J. Phys. Chem. B 1997, 101, 6028. https://doi.org/10.1021/jp970899f
  34. Chen, M.; Nikles, D. E. J. Appl. Phys. 1999, 85, 5504. https://doi.org/10.1063/1.369876
  35. Oku, M.; Sato, Y. Appl. Surf. Sci. 1992, 55, 37. https://doi.org/10.1016/0169-4332(92)90378-B

Cited by

  1. Ferromagnetic Cobalt Nanoparticles and Their Immobilization on Monomolecular Films and Chemical Templates vol.21, pp.24, 2011, https://doi.org/10.1002/adfm.201101570
  2. The optical and magnetic properties of CoO and Co nanocrystals prepared by a facile technique vol.5, pp.16, 2013, https://doi.org/10.1039/c3nr01971c
  3. Synthesis and Characterization of Cobalt Nanoparticles by Cobalt-Acetate vol.503-504, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.503-504.346
  4. Design and construction of a desktop AC susceptometer using an Arduino and a Bluetooth for serial interface vol.39, pp.3, 2018, https://doi.org/10.1088/1361-6404/aaa887
  5. Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids vol.119, pp.4, 2007, https://doi.org/10.1007/s12039-007-0043-3
  6. Synthesis of Carbon Nanotubes from Catalytic Decomposition of C2H2 through Pd/Al2O3 Catalysts vol.24, pp.12, 2003, https://doi.org/10.5012/bkcs.2003.24.12.1771
  7. Exchange biasing and magnetic properties of partially and fully oxidized colloidal cobalt nanoparticles vol.72, pp.6, 2003, https://doi.org/10.1103/physrevb.72.064404
  8. Structural and magnetic properties of CoO-Pt core-shell nanoparticles vol.89, pp.10, 2003, https://doi.org/10.1103/physrevb.89.104417
  9. Design and construction of a desktop AC susceptometer using an Arduino and a Bluetooth for serial interface vol.39, pp.3, 2018, https://doi.org/10.1088/0143-0807/39/3/035203