• Title/Summary/Keyword: Experimental verification

Search Result 1,663, Processing Time 0.025 seconds

Variable Control in Inductive Inference for Engineering Education (공학교육에서 귀납법 추론을 위한 변수 통제)

  • Hwang, Un Hak
    • Journal of Practical Engineering Education
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The variable control in the inductive inference for the confirmation and verification when the experimental data are collected is studied by applying the principle of probability inference. The control in engineering experiments is to protect any effect by of intervening variable except primary independent variable on the dependent variable. By the special condition the possibility for developing a phenomenon will be maximized; otherwise, by the extraneous condition the possibility for developing a phenomenon will be minimized. By doing so, the control may provide insurance for the causal relationship between the certain prior event (independent variable) and the post-event (the dependent variable). Some experiments by using both elliptical trainer and tread mill under the variable control are performed in order to find the relations between the energy expenditure, the respiratory exchange ratio (RER), and the heart rate (HR) against the exercise speed.

Development of 3-D Hydrodynamical Model for Understanding Numerical Analysis of Density Current due to Salinity and Temperature and its Verification (염분과 온도차에 의한 밀도류 해석을 위한 3차원 동수역학적 수치모델의 개발 및 검증)

  • Lee, Woo-Dong;Hur, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.859-871
    • /
    • 2014
  • In order to analyze the density current due to salt and temperature difference, this study develops new numerical model (LES-WASS-3D ver. 2.0) by introducing state equation for salt and temperature and 3D advection-diffusion equation to existing 3D numerical wave tank (LES-WASS-3D ver. 1.0). To verify the applicability, the newly-developed numerical model is analyzed comparing to the experimental result of existing numerical model. In the result, it well implement the behavior and vertical salt concentration of advected and diffused seawater as well as flow velocity and temperature of the discharged warm water. This confirms the validity and effectiveness of the developed numerical model.

Optimization of Physical Conditions for Caviar Analog Preparation Using Calcium-alginate Gel Capsules

  • Ji, Cheong-Il;Cho, Sueng-Mock;Yun, Young-Soo;Kim, Seon-Bong
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.103-112
    • /
    • 2007
  • High prices, overfishing, and contamination have limited the availability of natural caviar as a food product. We attempted to apply encapsulation by calcium-alginate gel membranes to caviar analog preparation in an effort to produce a high-quality replacement for natural caviar. Physical conditions of stirring speed $(X_1,\;rpm)$ and gelation time $(X_2,\;min)$ as the independent variables for gelation were optimized by response surface methodology. Sphericity $(Y_1,\;%)$, diameter $(Y_2,\;mm)$, membrane thickness $(Y_3,\;mm)$, rupture strength $(Y_4,\;g)$, and rupturing deformation $(Y_5,\;mm)$ were used as the dependent variables to compare characteristics of the capsules for caviar analogs with natural caviar. The values of the independent variables as evaluated by multiple response optimization were $X_1=-0.1271 (278 rpm) and $X_2=0.4436$ (12.2 min), respectively. Predicted values of the four dependent variables were $Y_1=97.7%,\;Y_2=2.97mm,\;Y_4=1,465g,\;and\;Y_5=1.15mm$. Membrane thickness $(Y_3)$ was eliminated from the dependent variables for multiple response optimization because it could not be measured with an image analyzer. The experimental values prepared under the optimal conditions for verification nearly coincided with the predicted values and satisfied the conditions of natural caviar.

Coherent x-ray scattering to study dynamics in thin films (결맞는 X-선 산란을 이용한 박막의 표면 거동 연구)

  • Kim, Hyun-Jung
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.143-146
    • /
    • 2005
  • A new method of x-ray photon correlation spectroscopy (XPCS) using coherent x-rays is developed recently for probing the dynamics of surface height fluctuations as a function of lateral length scale. This emerging technique applies the principles of dynamic light scattering in the x-ray regime. The short wavelength and slow time scales characteristic of XPCS extend the phase space accessible to scattering studies beyond some restrictions by light and neutron. In this paper, we demonstrate XPCS to study the dynamics of surface fluctuations in thin supported polymer films. We present experimental verification of the theoretical predictions for the wave vector and temperature dependence of the capillary wave relaxation times for the supported polymer films at melt for the film thicknesses thicker than 4 times of the radius of gyration of polymer. We observed a deviation from the conventional capillary wave predictions in thinner films. The analysis will be discussed in terms of surface tension, viscosity and effective interactions with the substrate.

A Study on Direct Current Measurement Using Magneto-Optical LMF Method (자기장학 누설자속법을 응용한 직류전류계측법에 관한 연구)

  • Lee, Jin-Yi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.566-572
    • /
    • 2004
  • It is necessary to measure the direct current with a non-contact methodology for the liquid or gas phase, as welt as the conducting metals. This paper described a theoretical consideration and experimental verification for a non-contact quantitative direct current measurement system using the Faraday effect and magnetic flux leakage. The leakage of magnetic flux occurs around a gap when a ferromagnetic core including the discontinuous gap is magnetized. Two large anisotropic domains in a magneto-optical film are occurred by the vertical component of leaked magnetic flux and the domain walls are paralleled to the center of the gap. Here, the symmetrical arrangement of domains are deflected when a vertical magnetic field is applied to the magneto-optical film. The domain wall of the magneto-optical film are relocated when a measuring current passes through the ferromagnetic core. Therefore, a direct current passing through the core can be determined quantitatively by the measurement of moving distance of the domain wall.

Semi-Continuous Electrowinning of LiCl-$Li_2O$ Molten Salt (LiCl-$Li_2O$ 용융염에서의 리튬의 반연속적 전기정련)

  • Jin-Mok, Hur;Chung-Seok, Seo;Sun-Seok, Hong;Dae-Seung, Kang;Seong-Won, Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.2 no.3
    • /
    • pp.211-217
    • /
    • 2004
  • A Li recovery technology has been developed and related experimental verification efforts were carried out to improve the economical viability and environmental friendliness of the 'Advanced Spent Fuel Conditioning Process' being developed at KAERI. This technology is characterized by the combination of 1) the electrolysis of $Li_2O$ in a molten salt by using a porous non-conducting magnesia container at the cathode, 2) the separation of the Li in the container from the molten salt by elevating the container above the level of a molten salt, 3) the transport of the Li in the container by using a vacuum siphon to a separated reservoir. Li was semi-continuously recovered from a LiCl-$Li_2O$ molten salt with a more than 95% yield by using the developed technology.

  • PDF

Behavior and Strength of Rib Stiffened SC Wall-slab Connection (리브 보강된 SC구조 벽-바닥 접합부의 거동 및 내력 평가)

  • Park, Joung Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.349-359
    • /
    • 2014
  • Until now, wall-slab plate of steel plate concrete has been constructed by joint. But, the shear plate has problems in the workability as well as structural integrity. This study investigates the behavior and strength of rib stiffened SC wall-slab connection. Seven prototype specimens of wall-slab connections were fabricated and tested. the structural safety of the specimens was confirmed through the monotonic loading test. Based on the experimental observations, this study propose the strength formula of the joint was proposed. To enhance the reliability of the proposed strength formula, analytical verification was performed through inelastic finite element analysis. Effect of parameters, such as, load point, friction coefficient, on the joint strength was examined. The proposed formula yields a conservative value for most cases.

Experimental Verification of Heat Sink for FPGA Thermal Control (FPGA 열제어용 히트싱크 효과의 실험적 검증)

  • Park, Jin-Han;Kim, Hyeon-Soo;Ko, Hyun-Suk;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.9
    • /
    • pp.789-794
    • /
    • 2014
  • The FPGA is used to the high speed digital satellite communication on the Digital Signal Process Unit of the next generation GEO communication satellite. The high capacity FPGA has the high power dissipation and it is difficult to satisfy the derating requirement of temperature. This matter is the major factor to degrade the equipment life and reliability. The thermal control at the equipment level has been worked through thermal conduction in the space environment. The FPGA of CCGA or BGA package type was mounted on printed circuit board, but the PCB has low efficient to the thermal control. For the FPGA heat dissipation, the heat sink was applied between part lid and housing of equipment and the performance of heat sink was confirmed via thermal vacuum test under the condition of space qualification level. The FPGA of high power dissipation has been difficult to apply for space application, but FPGA with heat sink could be used to space application with the derating temperature margin.

Parallel Processing of the Fuzzy Fingerprint Vault based on Geometric Hashing

  • Chae, Seung-Hoon;Lim, Sung-Jin;Bae, Sang-Hyun;Chung, Yong-Wha;Pan, Sung-Bum
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1294-1310
    • /
    • 2010
  • User authentication using fingerprint information provides convenience as well as strong security. However, serious problems may occur if fingerprint information stored for user authentication is used illegally by a different person since it cannot be changed freely as a password due to a limited number of fingers. Recently, research in fuzzy fingerprint vault system has been carried out actively to safely protect fingerprint information in a fingerprint authentication system. In addition, research to solve the fingerprint alignment problem by applying a geometric hashing technique has also been carried out. In this paper, we propose the hardware architecture for a geometric hashing based fuzzy fingerprint vault system that consists of the software module and hardware module. The hardware module performs the matching for the transformed minutiae in the enrollment hash table and verification hash table. On the other hand, the software module is responsible for hardware feature extraction. We also propose the hardware architecture which parallel processing technique is applied for high speed processing. Based on the experimental results, we confirmed that execution time for the proposed hardware architecture was 0.24 second when number of real minutiae was 36 and number of chaff minutiae was 200, whereas that of the software solution was 1.13 second. For the same condition, execution time of the hardware architecture which parallel processing technique was applied was 0.01 second. Note that the proposed hardware architecture can achieve a speed-up of close to 100 times compared to a software based solution.

Monocular Vision-Based Guidance and Control for a Formation Flight

  • Cheon, Bong-kyu;Kim, Jeong-ho;Min, Chan-oh;Han, Dong-in;Cho, Kyeum-rae;Lee, Dae-woo;Seong, kie-jeong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.581-589
    • /
    • 2015
  • This paper describes a monocular vision-based formation flight technology using two fixed wing unmanned aerial vehicles. To measuring relative position and attitude of a leader aircraft, a monocular camera installed in the front of the follower aircraft captures an image of the leader, and position and attitude are measured from the image using the KLT feature point tracker and POSIT algorithm. To verify the feasibility of this vision processing algorithm, a field test was performed using two light sports aircraft, and our experimental results show that the proposed monocular vision-based measurement algorithm is feasible. Performance verification for the proposed formation flight technology was carried out using the X-Plane flight simulator. The formation flight simulation system consists of two PCs playing the role of leader and follower. When the leader flies by the command of user, the follower aircraft tracks the leader by designed guidance and a PI control law, and all the information about leader was measured using monocular vision. This simulation shows that guidance using relative attitude information tracks the leader aircraft better than not using attitude information. This simulation shows absolute average errors for the relative position as follows: X-axis: 2.88 m, Y-axis: 2.09 m, and Z-axis: 0.44 m.