Purpose: To evaluate the safety and efficiency of bone regenerative abilities of silk fibroin nanomembrane(Nanoguide-S) Material and Methods: The objects were 38 patients who had large defect at extraction sockets caused by chronic periodontitis and silk fibroin nano matrix were used on experimental group(N=19) and PLA/PLGA matrix were used on control group(N=19). The width, height, and length by crown-apical direction(socket depth) of defects were measured with the occlusal plane as a reference plane, and tooth axis direction, perpendicular to tooth axis direction were measured on radiographs at 3 months pre-operative, 3 months post-operative. Result: Tissue response to silk fibroin nano matrix and Biomesh were clinically satisfactory and complications such as swelling, exudation, ulceration and vesicles were not found except the ordinary discomfort of operated portion. 3 months later, the width, height, and length by crown-apical direction (socket depth) of defects were clinically improved in both groups with no significant difference. 3 months later radiolucency of tooth axis direction and perpendicular to tooth axis direction were all increased in both groups with no significant difference. Conclusion: By these results biodegradadable silk fibroin nano matrix was efficient in GBR on alveolar bone resorption caused by periodontitis compared to Biomesh.
Kim, Jae-Hyung;Lee, Jae-Mok;Park, Jin-Woo;Suh, Jo-Young
Journal of Periodontal and Implant Science
/
v.34
no.4
/
pp.733-746
/
2004
The present study aimed to examine the effects of topical application of alendronate with a collagen membrane on the healing of the calvarial defect in rats, which has a good experimental design for the healing of tissue destruction, To study the effect of alendronate on bone healing, the collagen membrane containing $200{\mu}g$ alendronate was inserted in the defects of the right side and collagen membrane treated with physiologic saline was inserted in the defects of the left side. After 1, 2 and 4 weeks, observation of histologic feature after H&E staining, cell counting after TRAP staining, and hardness measurement(Knoop) were performed. In histologic finding, similar features were shown for both test and control groups each week. In cell counting only the 1 week test groups showed significant reduction of TRAP(+)cells than control groups(p<0.01) and the control groups showed statistically significant difference for 1, 2, 4weeks(p<0.05). In hardness measurement, The 2 week test groups showed significant higher hardness than control groups.(p<0,05) and not 4 weeks. There was significant increase of hardness for both groups as time goes by.(p<0.0l) Therefore local application of alendronate with collagen membrane was somewhat effective in reducing osteoclastic activity and increasing hardness in the early stage of healing. Further investigation concerning the actual effect of alendronate for bony healing will be necessary to apply the clinical cases
Purpose: This study was performed to evaluate the effect of various graft materials used with a titanium cap on the ability of new bone formation in the rabbit calvarium. Materials and Methods: A total of 32 sites of artificial bony defects were prepared on the calvaria of sixteen rabbits by using a trephine bur 8 mm in diameter. Each rabbit had two defect sites. 0.2 mm deep grooves were formed on the calvaria of sixteen rabbits by using a trephine bur 8 mm in diameter for the fixation of a titanium cap. The treatments were performed respectively as follows: without any graft for the control group (n=8), autogenous iliac bone graft for experimental group 1 (n=8), alloplastic bone graft ($SynthoGraft^{(R)}$, USA) for experimental group 2 (n=8), and xenogenic bone graft ($NuOss^{(R)}$, USA) for experimental group 3 (n=8). After the treatments, a titanium cap (8 mm in diameter, 4 mm high, and 0.2 mm thick) was fixed into the groove. At the third and sixth postoperative weeks, rabbits in each group were sacrificed for histological analysis. Results: 1. In gross examination, the surgical sites showed no signs of inflammation or wound dehiscence, and semicircular-shaped bone remodeling was shown both in the experimental and control groups. 2. In histological analysis, the control group at the third week showed bone remodeling along the inner surface of the cap and at the contact region of the calvarium without any specific infiltration of inflammation tissue. Also, there was no soft tissue infiltration. Bone remodeling was observed around the grafted bone and along the inner surface of the titanium cap in experimental group 1, 2, and 3. 3. Histologically, all groups at the sixth week showed the increased area of bone remodeling and maturation compared to those at the third week. In experimental group 2, the grafted bone was partially absorbed by multi nucleated giant cells and new bone was formed by osteoblasts. In group 3, however, resorption of the grafted bone was not observed. 4. Autogenous bone at the third and sixth week showed the most powerful ability of new bone formation. The size of newly formed bone was in decreasing order by autogenous, alloplastic, and heterogenous bone graft. There was no statistically significant difference among autogenous, alloplastic, and heterogenous bones(p>0.05). Summary: This result suggests that autogenous bone is the best choice for new bone formation, but when autogenous bone graft is in limited availability, alloplastic and xenogenic bone graft also can be an alternative bone graft material to use with a suitably guided membrane.
Purpose : This research evaluates the effect of the use of absorbable membrane barrier with deproteinized bovine bone (Bio-$Oss^{(R)}$, Switzerland) on bone healing in surgically created critical-sized defects in rat calvaria. Materials and Methods : Two standardized transosseous circular calvarial defects (5 mm in diameter) are made in each calvarium of 30 rats. These rats are divided into negative control group(n=15), positive control group(n=15) and two experimental groups(n=15). In the negative control group, defects are only filled with blood clots. In the positive control group, defects are filled with autogenous bone obtained from calvarium; in the experimental group 1, defects are filled with deproteinized bovine bone; and in the experimental group 2, defects are filled with deproteinized bovine bone with absorbable membrane. At the postoperative 1 week, 3 weeks. and 6 weeks, clinical. histologic and histomorphometric evaluations of the defects are performed. Results : 1. The grafted bone without membrane in the calvarial bone defect was scattered but, the grafted bone with membrane was stable. 2. $BioMesh^{(R)}$ membrane was absorbed beginning at 3 weeks, and was absorbed considerably at 6 weeks while maintaining the structural form of the membrane. 3. The use of membrane blocked soft tissue invasion. 4. In histomorphometric analysis. it showed the greatest amount of new bone formation in the positive control group. The amount of new bone formation was greater in the experimental group 2 than experimental group 1. At 6 weeks. the amount of new bone formation was greater in the positive control group than experimental group l(p<0.005). Conclusion : These results suggest that membrane increase the stability of grafted bone and protects from soft tissue invasion, and the use of the membrane may promote new bone formation in deproteinized bovine bone graft area.
The purpose of this study was to investigate whether the ashed tooth powder is utilized as an alternative material of the implant to recovery the bony defect. For this purpose its biocompatibility was evaluated comparing to the synthetic calcium phosphate compounds, such as Syntograft and Calcitite, as well as the vacuum firing porcelain (Ceramco Inc.) which is anticipated to use as a matrix to aid sintering. Bony defects to exposure the bone marrow, $3{\times}5$ mm in size, were created in the right and left tibias of fifteen rabbits, and then the ashed tooth powder at $950^{\circ}C$, the porcelain powder, Syhtograft and Calcitite were inserted in the defects of twelve rabbits of the experimental group and the blood clot only was filled in the defects of three rabbits of the control group. The experimental and control rabbits were sacrificed at 1st, 2nd 3rd week after implantation and the histologic examination was performed. The ashed tooth powder in order to make the needed form of the implant was molded using the cylindrical mold 1 cm high, 1 cm in diameter under the pressure of $1000kg/cm^2$ and the ashed tooth powder was sintered at $1100^{\circ}C$ for 1 hour and the mixture of the porcelain powder and the ashed tooth powder at the weight ratio of 7:3, 6:4, 5:5, 4:6 were molded in the same manner and were sintered at $925^{\circ}C$. From this sintered material, square shaped implants were prepared in the dimension of $2{\times}4{\times}6mm$. The prepared implants were surgically placed in the subperiosteum of lateral surfaces of the right and left mandibular bodies. The dogs were sacrificed at 4 weeks, and then the specimens were examined using the light and scanning electron microscopes. The results of this study were obtained as follows: 1. Any inflammatory response was not noted after implanting of the ashed tooth powder, Syntograft, Calcitite and the porcelain powder during the whole experimental period after implantation. 2. Induction of the new bone formation was significantly shown in the ashed tooth powder, Syntograft and Calcitite. 3. The more the porcelain powder was contained in the implants, the more the porosity was and the bigger the pore size was under the scanning electron microscope. And there was ingrowing of the fibrous connective and the osteoid tissue. 4. The osteoid tissues were found to be directly fused to the implant of the ashed tooth powder, and the mixture implant of the porcelain powder and the ashed tooth powder at the weight ratio of 4:6 under the light and scanning electron microscopes.
Periodontal regeneration therapy with bone-substituting materials has gained favorable clinical efficacy by enhancing osseous regeneration in periodontal bony defect. As bone-substituting materials, bone powder, calcium phosphate ceramic, modified forms of hydroxyapatite, and hard tissue replacement polymer have demonstrated their periodontal bony regenerative potency. Bone-substituting materials should fulfill several requirements such as biocompatibility, osteogenecity, malleability, biodegradability. The purpose of this study was to investigate biocompatibility, osteo-conduction capacity and biodegradability of $Na_2O$, $K_2O$ added calcium metaphosphate(CMP). Beta CMP was obtained by thermal treatment of anhydrous $Ca_2(H_2PO_4)_2$. $Na_2O$ and $K_2O$ were added to CMP. The change of weight of pure CMP, $Na_2O$-CMP, and $K_2O$-CMP in Tris-buffer solution and simulated body fluid for 30 days was measured. Twenty four Newzealand white rabbits were used in negative control, positive control(Bio-Oss), pure CMP group, 5% $Na_2$-CMP group, 10% $Na_2O$-CMP goup, and 5% $K_2O$-CMP group. In each group, graft materials were placed in right and left parietal bone defects(diameter 10mm) of rabbit. The animals were sacrificed at 3 months and 6 months after implantation of the graft materials. Degree of biodegradability of $K_2O$ or $Na_2O$ added CMP was greater than that of pure CMP in experimental condition. All experimental sites were healed with no clinical evidence of inflammatory response to all CMP implants. Histologic observations revealed that all CMP grafts were very biocompatible and osseous conductive, and that in $K_2O$-CMP or $Na_2O$-CMP implanted sites, there was biodegradable pattern, and that in site of new bone formation, there was no significant difference between all CMP group and DPBB(Bio-Oss) group. From this result, it was suggested that all experimental CMP group graft materials were able to use as an available bone substitution.
The purpose of this study was to study of the effects of the bioglass and the natural coral on healing process of the alveolar bone defects. Three adult dogs aged 1 to 2 years were used in this study. Experimental alveolar bone defects were created surgically with surgical bur and bone chisel at the furcation area of the buccal surface of the right and left mandibular 3rd, 4th premolars. Twelve experimental alveolar bone defects were devided into four groups according to the type of graft materials. The groups were as follows : 1. flap operation with root planing & curettage(Negative control group) 2. flap operation with autogenous bone(Positive control group) 3. flap operation with bioglass(BG group) 4. flap operation with natural coral(NC group) At 2, 4, and 8 weeks, the dogs were serially sacrificed and specimens were prepared with Hematoxylin-Eosin stain for light microscopic evaluation. The results of this study were as follows : 1. The defect areas were filled with granulation tissue at two weeks in negative control group. But in other groups, the appearance of connective tissues around graft materials were formed more densely and the response of inflammation by graft materials itself was not found. 2. In every control and experimental groups at two weeks, there was seen the accumulation of the formation of new bone trabeculae at the bottom of defects and gradually expanded toward the graft materials and in autogenous group there was slightly seen the formation of new cementum. 3. There was seen the erosion of central portion of bioglass particles at two weeks in BG group, and the erosion of the central portion was developed more progressively and was filled with bone-like tissues at eight weeks. 4. The natural coral particles were encapsulated by densely connective tissues and seen the formation of new bone tissues at four weeks and developed more new bone and cementum formation at eight weeks. From the results of this study, the bioglass and the natural coral may be biocompatible and have a weak adverse reaction to the periodontal tissues.
Purpose: An animal periodontitis model is essential for research on the pathogenesis and treatment of periodontal disease. In this study, we have introduced a lipopolysaccharide (LPS) of a periodontal pathogen to the alveolar bone defect of experimental animals and investigated its suitability as a periodontitis model. Methods: Alveolar bone defects were made in both sides of the mandibular third premolar region of nine beagle dogs. Then, the animals were divided into the following groups: silk ligature tied on the cervical region of tooth group, Porphyromonas gingivalis LPS (P.g. LPS)-saturated collagen with silk ligature group, and no ligature or P.g. LPS application group as the control. The plaque index and gingival index were measured at 0 and 4 weeks postoperatively. The animals were then euthanized and prepared for histologic evaluation. Results: The silk ligature group and P.g. LPS with silk ligature group showed a significantly higher plaque index at 4 weeks compared to the control (P<0.05). No significant difference was found in the plaque index between the silk ligature group and P.g. LPS with silk ligature group. The P.g. LPS with silk ligature group showed a significantly higher gingival index compared to the silk ligature group or the control at 4 weeks (P<0.05). Histologic examination presented increased inflammatory cell infiltration in the gingival tissue and alveolar bone of the P.g. LPS with silk ligature group. Conclusions: An additional P.g. LPS-saturated collagen with silk ligature ensured periodontal inflammation at 4 weeks. Therefore, P.g. LPS with silk ligature application to surgically created alveolar bone defects may be a candidate model for experimental periodontitis.
Background: Over the past 30-40 years, various carbon implant materials have become more interesting, because they are well accepted by the biological environment. The traditional carbon-based polymers give rise to many complications. The polymer complication may be eliminated through carbon fibres bound by pyrocarbon (carbon/carbon). The aim of this study is to present the long-term clinical results of carbon/carbon implants, and the results of the scanning electron microscope and energy dispersive spectrometer investigation of an implant retrieved from the human body after 8 years. Methods: Mandibular reconstruction (8-10 years ago) was performed with pure (99.99 %) carbon implants in 16 patients (10 malignant tumours, 4 large cystic lesions and 2 augmentative processes). The long-term effect of the human body on the carbon/carbon implant was investigated by comparing the structure, the surface morphology and the composition of an implant retrieved after 8 years to a sterilized, but not implanted one. Results: Of the 16 patients, the implants had to be removed earlier in 5 patients because of the defect that arose on the oral mucosa above the carbon plates. During the long-term follow-up, plate fracture, loosening of the screws, infection or inflammations around the carbon/carbon implants were not observed. The thickness of the carbon fibres constituting the implants did not change during the 8-year period, the surface of the implant retrieved was covered with a thin surface layer not present on the unimplanted implant. The composition of this layer is identical to the composition of the underlying carbon fibres. Residual soft tissue penetrating the bulk material between the carbon fibre bunches was found on the retrieved implant indicating the importance of the surface morphology in tissue growth and adhering implants. Conclusions: The surface morphology and the structure were not changed after 8 years. The two main components of the implant retrieved from the human body are still carbon and oxygen, but the amount of oxygen is 3-4 times higher than on the surface of the reference implant, which can be attributed to the oxidative effect of the human body, consequently in the integration and biocompatibility of the implant. The clinical conclusion is that if the soft part cover is appropriate, the carbon implants are cosmetically and functionally more suitable than titanium plates.
Regeneration of the periodontal tissue destroyed by periodontal disease is one of the final goals of periodontal therapy. In the past few years, periodontists have used various alloplastic grafting materials in an attempt to regenerate bone lost from periodontal disease. These materials have used widely because they have shown to be nontoxic, biologically compatible with surrounding host tissue and chemically similar to bone. The purpose of this study was to investigate the effect of Porous Resorbable Calcium Carbonate and Porous Replamineform Hydroxyapatite on the regeneration of the alveolar bone and the healing of roots transplanted into the periodontally diseased extraction sockets of dogs. The experimental chronic periodontitis was induced by elastic ligatures on the 2nd and 3rd mandibular premolars of 2 adult dogs for 8weeks after surgically creating periodontal defect. The extracted root were split in half along the long-axis, and the extend of plaque exposure was marked on the root surfaces with burs. The roots were inserted in extraction sockets with Porous Resorbable Calcium Carbonate(PRCC) in left side and with Porous Replaminefrom Hydroxyapatite(PRH) in right side. The flaps were sutured to cover the sockets completely. The animals were sacrificed after 12 weeks of healing, and the specimens were examined histologically. The results were as follows: 1. No inflammatory reactions were observed in either groups. 2. Hoot resorption was observed in both groups while the general outline of the roots were maintained. 3. PRCC was almost completely resorbed and replaced with new bone, while R.H.A. was not resorbed & remained encased in newly-formed C-T and alveolar bone. 4. PRH was encapsulated with alveolar bone which has been deposited from apical & lateral area of the sockets, while the coronal portion of the sockets were filled with C-T. 5. In both groups, the resorbed portions of the roots were replaced with new bone. These results suggest that either PRCC or PRH may not interfere with bone formation or healing in extraction sockets, and in some degree, retard the root resorption. Because the roots maintained in anatomy, we think that graft materials prevent the root resorption.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.