• 제목/요약/키워드: Experimental modal parameter

검색결과 89건 처리시간 0.025초

폐루프 공진 주파수를 이용한 모델 개선법 (Model Updating Using the Closed-loop Natural Frequency)

  • 정훈상;박영진
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

화력 발전용 발전기 고정자 프레임의 모드매개변수 규명 (Modal Parameter Identification of a Generator Stator Frame for Fossil Power Plants)

  • 김철홍;류석주;박종포
    • 소음진동
    • /
    • 제9권3호
    • /
    • pp.570-576
    • /
    • 1999
  • This paper presents numerical and experimental results of modal parameter identification in a generator stator frame for 500 MW fossil power plants. A commercial finite element analysis S/W was employed for modal analysis. The generator is excited by alternating electromagnetic forces, mainly of 120 Hz in 60 Hz machines, due to magnetic field and electric current in windings. It is necessary to verify that the stator frame has adequate frequency margin from the excitation frequency to avoid possible resonance when operating. Thus, frequency margin required for the stator frame is established using the numerical and experimental results. The results show that the stator frame meets the frequency-margin requirements. Also, results of modal analysis for design modification in order to reduce weights of the stator frame without deteriorating vibration characteristics are presented.

  • PDF

초전도 자기베어링-플라이휠 시스템의 베어링 모델링 (Bearing Modeling of Superconducting Magnetic Bearings-Flywheel System)

  • 김정근;이수훈
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.891-898
    • /
    • 1999
  • The purpose of Superconducting Magnetic Bearing Flywheel Energy Storage System (SMB-FESS) is to store unused nighttime electricity until it is needed during daytime. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function.

  • PDF

선체 상부구조물의 실험적 해석 (Experimental Method of a Super Structure)

  • 박석주;박성현;오창근;제해광
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.328-334
    • /
    • 2001
  • Up to now. vibration analysis and vibration engineering have been developed, encompassing the aspects of both experimental and analytical techniques. Using experimental modal analysis or modal testing, the mode shapes and frequencies of practical structure can be measured accurately. Curve-Fitting Method is realized through experimental modal identification. In the experimental modal parameter estimation, the estimation of modal damping factor is difficult for complicated and large structure. Also numbers of Selected mode are determined before the procedure. This paper describes the vibration shape of the super-structure model of ship through experimental modal analysis.

  • PDF

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

궤환 모델 개선법 : 부정정 구조물에의 적용 (Feedback Model Updating: Application to Indeterminate Structure)

  • 정훈상;박영진;박윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.59-64
    • /
    • 2003
  • The parameter modification of the initial FEM model to match it with the experimental results needs the modal information and the modal sensitivity matrix to the parameter change. There are two cases this methodology is ill-equip to deal with; the deficiency of the necessary modal information and the ill-conditioning of the sensitivity matrix. In this research, a novel concept of the feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains as the reference signal is proposed. There are 2 advantages using this external feedback excitation. First, we can use the change of the system response such as modal data by the active energy Path from the sensor to the exciter. This change of the system response can be additional clues to the system dynamics that we want to know. Secondly, the external energy Path alternates the offset of the Parameter change to the system response. That means the modal sensitivity of the parameters becomes different from the original sensitivities by the feedback excitation. Through the feedback loop, we can change the similar modal sensitivities of some updating parameters and consequently discriminate the parameters using the closed-loop modal data. To demonstrate the discrimination performance, the parameter estimation of an indeterminate structure by use of the feedback method is introduced.

  • PDF

고유벡터와 고유치를 고려한 모형 프레임의 유한요소 모델 개선에 관한 연구 (A Study on the Improvement of Finite Element Model for Scaled Frame by Considering Eigenvectors and Eigenvalues)

  • 김병곤;정태진;이종길;허덕재
    • 소음진동
    • /
    • 제10권6호
    • /
    • pp.1009-1016
    • /
    • 2000
  • This paper describes the procedure of increasing the efficiency of experimental modal analysis and updating the quality of FE model using the scaled commercial vehicle frame. In this study, it was found that the experimental modal analysis could be more efficient when the measurements were made on the areas with high kinetic energies. Such areas could be located with the aid of FE modal analysis. Also, the number of measurement points could be decided by considering the dynamic characteristics of full FE model. The correlation of FE model and experimental modal analysis was assessed by the differences between the natural frequencies and MAC matrix, which is based on normal modes. These differences of modal parameters were reduced through the sensitivity and optimization analysis of which objective function consisted of the errors of natural frequencies and the diagonal terms of MAC matrix.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF

변형률 모드시험방법의 특성 및 응용 (Characteristics and Applications of a Strain Modal Testing Method)

  • 차주환;하태희;이건명
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.420-427
    • /
    • 1998
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from strain frequency response functions using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The method can be used to predict strain responses and excitation forces for given excitation forces and responses, respectively. Cracks on a structure can be detected by measuring strian FRFs and comparing them with the original ones.

  • PDF

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.