• 제목/요약/키워드: Expanded uncertainty

검색결과 196건 처리시간 0.039초

Probabilistic seismic assessment of structures considering soil uncertainties

  • Hamidpour, Sara;Soltani, Masoud;Shabdin, Mojtaba
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.165-175
    • /
    • 2017
  • This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full probabilistic analysis methods like MC commonly are very time consuming, the feasibility of simple approximate methods' application including First Order Second Moment (FOSM) method and ASCE41 proposed approach for the soil uncertainty considerations is investigated. By comparing the results of the approximate methods with the results obtained from MC, it's observed that the results of both FOSM and ASCE41 methods are in good agreement with the results of MC simulation technique and they show acceptable accuracy in predicting the response variability.

소음기 감음 성능 불확도 산출 방법 연구 (Application of the uncertainty for insertion loss measurement of silencers)

  • 유승국;김대현;김영찬;김두훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.1675-1680
    • /
    • 2000
  • Recently the uncertainty has been made rapid progress in various fields of industry but the uncertainty measurement method of acoustical test (i.e. Insertion loss, Absorption ratio, Transmission loss etc,) hasn't been established. In this study, the uncertainty of measurement method for ducted silencers is carried out according to ISO 7235. The standard uncertainty factors are composed of sound pressure level, microphone sensitivity and pistonphone calibration in this measurement. Sound pressure level is type A evaluation of uncertainty, microphone sensitivity and pistonphone calibration are type B evaluation of uncertainty. The combined standard uncertainty is calculated by two type evaluation. The expanded uncertainty is expressed by the combined standard uncertainty multiply k value which is yield the effective degree of freedom.

  • PDF

정밀전력계의 교정과 시험을 위한 전력표준시스템 (Power Standard System for the Calibration and Test of Precision Power Meters)

  • 박영태;유권상;유광민;장석명
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권11호
    • /
    • pp.622-627
    • /
    • 2002
  • The power comparison techniques have implemented power measurements, in which a power comparator is used to balance ac against a dc power obtained from known values. The developed power standard system using the comparison techniques consists of dc sources, ac source, control switches, resistive voltage dividers, resistive shunts and a power comparator. The total uncertainty of the power standard system was proved by analysis of the component instruments. Its expanded(k=2) uncertainty is evaluated to be less than 30 uW/VA at unit power factor and 42 uW/VA at power factor 0.5

Measurement of Uncertainty Using Standardized Protocol of Hand Grip Strength Measurement in Patients with Sarcopenia

  • Ha, Yong-Chan;Yoo, Jun-Il;Park, Young-Jin;Lee, Chang Han;Park, Ki-Soo
    • 대한골대사학회지
    • /
    • 제25권4호
    • /
    • pp.243-249
    • /
    • 2018
  • Background: The aim of this study was to determine the accuracy and error range of hand grip strength measurement using various methods. Methods: Methods used for measurement of hand grip strength in 34 epidemiologic studies on sarcopenia were analyzed. Maximum grip strength was measured in a sitting position with the elbow flexed at 90 degrees, the shoulder in 0 degrees flexion, and the wrist in neutral position (0 degrees). Maximum grip strength in standing position was measured with the shoulder in 180 degrees flexion, the elbow fully extended, and the wrist in neutral position (0 degrees). Three measurements were taken on each side at 30 sec intervals. The uncertainty of measurement was calculated. Results: The combined uncertainty in sitting position on the right and left sides was 1.14% and 0.38%, respectively, and the combined uncertainty in standing position on the right and left sides was 0.35 and 1.20, respectively. The expanded uncertainty in sitting position on the right and left sides was 2.28 and 0.79, respectively, and the expanded uncertainty in standing position on the right and left sides was 0.71 and 2.41, respectively (k=2). Conclusions: Uncertainty of hand grip strength measurement was identified in this study, and a significant difference was observed between measurement. For more precise diagnosis of sarcopenia, dynamometers need to be corrected to overcome uncertainty.

소닉노즐의 유량측정 불확도 평가 (Evaluation of Flow Measurement Uncertainty of Sonic Nozzle)

  • 최해만;박경암;최용문
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1898-1904
    • /
    • 2001
  • Measurement uncertainty should be evaluated according to ISO/IEC 17025. In Flow measurement area, uncertainty evaluation scheme was applied to the reference flow meter, sonic nozzle. Uncertainty was calculated by evaluating various uncertainty factors affected in flow measurement. The expanded uncertainty(U) of the sonic nozzle was 2.1$\times$ 10$^{-3}$ (confidence level of 95 %). This evaluation example will be useful in flow measurement uncertainty determination of other flow meters.

Uncertainty analysis of speed-power performance based on measured raw data in sea trials

  • Seo, Dae-Won;Oh, Jungkeun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.396-404
    • /
    • 2021
  • It is important to verify that the contracted speed-power performance of a ship is satisfied in sea trials. International Organization for Standardization (ISO) has published the procedure for measuring and assessing ship speed during sea trials. The results obtained from actual sea conditions inevitably include various uncertainty factors. In this study, double run tests were performed on one container ship to analyze the uncertainty of sea trial on three maximum continuous rating conditions. The uncertainty factors and scale of uncertainty were examined based on the measured raw data during sea trial. The results indicate that the expanded uncertainty for ideal power performance is approximately ±1.4% at 95% confidence level (coverage factor k = 2) and most of the uncertainty factors were because of the shaft power measurement system.

정적법을 이용한 중진공 국가표준기 개발 (Development of a national medium vacuum standard by static expansion method)

  • 홍승수;임인태;신용현;정광화
    • 한국진공학회지
    • /
    • 제14권2호
    • /
    • pp.59-68
    • /
    • 2005
  • 부피가 다른 세 개의 진공용기를 조합하여 정적법 (static expansion method)을 이용한 중진공영역의 국가표준기를 개발하였다. 이 장치를 이용하여 133pa 범위의 용량형 진공게이지 (capacitance diaphragm gauge)를 교정하여 국제표준화기구의 측정불확도 표현지침에 따라 분석하였다. 그 결과 표준압력 0.553Pa에서의 확장불확도 (expanded uncertainty)가 95% 신뢰수준 (confidence level), 포함인자 (coverage factor) k=2에서 $2.628\times10^{-3}Pa$로 우수한 성능을 보였다.

진공측정표준의 불확도 평가모델 개발 (Development of Uncertainty Evaluation Model for Vacuum Measurement Standards)

  • 홍승수;임종연;신용현
    • 한국진공학회지
    • /
    • 제20권5호
    • /
    • pp.313-321
    • /
    • 2011
  • 한국표준과학연구원(Korea Research Institute of Standards and Science, KRISS)에는 초음파간섭 수은주압력계(ultrasonic interferometer manometer, UIM), 정적형표준기(static volume expansion system, SVES), 오리피스형 정압표준기(orifice-type dynamic expansion system, ODES) 등 세 개의 주요한 국가 진공표준기가 있다. 이 장치들의 불확도 평가를 위해 각각 변수들의 측정 및 계산 모델을 개발하였다. 국제표준화기구(International Organization for Standardization, ISO) 지침에 따라 표준기들의 확장불확도(expanded uncertainty, U)를 계산하였다.

대기 중 NO2 측정의 불확도 평가 (Evaluation of Uncertainties in the Measurement of Ambient NO2 Level)

  • 이진홍;임종명;우진춘
    • 한국대기환경학회지
    • /
    • 제18권5호
    • /
    • pp.355-362
    • /
    • 2002
  • There has been relatively a few studies that focused on evaluation of uncertainty for standard methods by which criteria pollutants are analyzed in ambient air. Especially, uncertainty evaluation has not been made yet for sampling and analysis of airborne NO$_2$. Ambient NO$_2$ has been thought to be a major criteria pollutant worldwide because of the potential of ozone formation as well as of its own toxicity. In this study, we tried to assess uncertainties associated with the every step of sampling and of analytical procedure of Griess-Saltzman method. Quality assurance (QA) and quality control (QC) were also emphasized with the uncertainty characterization. The use of Griess-Saltzman method for ambient NO$_2$ analysis showed very uniform daily concentration distribution with the mean of 10.8 ppb and the standard deviation of 1.08ppb during the sampling period. However, seven daily samples collected at the same sampling time and place exhibited highly different concentration distribution. Therefore, we evaluated uncertainties associated with sampling and analysis through the precise application of ISO Guide. Estimates of expanded uncertainties for a total of 62 samples fell in a relatively broad range of 5.17% to 11.85%. On the other hand. the expanded uncertainties were smaller for the high concentration range of greater than 15ppb.

다축 힘/모멘트 센서 교정기의 개발 및 그의 불확도 평가 (Development of Calibration System for Multi-Axis Force/Moment Sensor and Its Uncertainty Evaluation)

  • 김갑순;윤정원
    • 한국정밀공학회지
    • /
    • 제24권10호
    • /
    • pp.91-98
    • /
    • 2007
  • This paper describes the development of the calibration system for a multi-axis force/moment sensor and its uncertainty evaluation. This calibration system can generate the continuous forces (${\pm}Fx,\;{\pm}Fy$ and ${\pm}Fz$) and moments (${\pm}Mx,\;{\pm}My$ and ${\pm}Mz$). Many kinds of multi-axis force/moment sensors in industries should be carried out the characteristic test or the calibration with the calibration system that can generate the forces and the moments. The calibration systems have been already developed are the disadvantages of the low capacity, the generation of step forces(10N, 20N ...) and step moments(1Nm, 2Nm ...) with weights, the high coasts in manufacture and so on. In this paper, the calibration system for a multi-axis force/moment sensor that can generate the continuous three forces and three moments was developed. Their ranges are $0{\sim}2000N$ in all force-directions and $0{\sim}400Nm$ in all moment-directions. And the system was evaluated in the expanded relative uncertainty. They were ${\pm}0.0004$ in all forces ${\pm}Fx,\;{\pm}Fy$ and ${\pm}Fz$, and ${\pm}0.0004$ in all moments ${\pm}Mx,\;{\pm}My$ and ${\pm}Mz$.