• 제목/요약/키워드: Exfoliation process

검색결과 60건 처리시간 0.029초

AE파형분류에 의한 용사코팅재의 파손해석 (Fracture Analysis of Plasma Spray Coating by Classification of AE Signals)

  • 김귀식;박경석;홍용의
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.24-30
    • /
    • 2002
  • The deformation and fracture behaviors of both Al2O3 and Ni 4.5wt.%Al plasma thermal spray coating were investigated by an acoustic emission method. Plasma thermal spray coating is formed by a process in which melted particles flying with high speed towards substrate, then crash and spread on the substrate surface cooled and solidified in a very short time, stacking of the particles makes coating. A tensile test is conducted on notch specimens in a stress range below the elastic limit of substrate. A bendind test is done on smooth specimens. The waveforms of AE generated from the both test coating specimens can be classified by FFT analysis into two types which low frequency(type I) and high frequency(type II). The type I waveform is considered to corresponds exfoliation of coating layers and type II waveform corresponds the plastic deformation of notch tip. The fracture of the coating layers can estimate by AE event and amplitude, because AE features increase when the deformation generates.

  • PDF

쉴드 TBM 터널의 구조물 성능 평가 기준 개발 (Development of performance assessment criterion for structures of shield TBM tunnel)

  • 성주현;이유석;홍은수;변요셉
    • 한국터널지하공간학회 논문집
    • /
    • 제17권5호
    • /
    • pp.553-561
    • /
    • 2015
  • 본 연구에서는 국내에 활발히 적용되기 시작한 쉴드 TBM 터널의 합리적인 유지관리를 위한 성능평가 기준을 제시하였다. 이를 위해 국내 외 성능평가 기준을 분석하였고, 국내 시공된 쉴드 TBM 터널에 대한 현장조사 및 정밀안전진단 보고서 분석을 통한 변상사례를 조사하여 성능평가 항목을 균열, 누수, 파손, 박리, 층분리 및 박락, 백태, 품질상태, 철근노출, 탄산화, 단차, 볼트상태, 배수상태, 지반상태, 접속부상태, 공동구 상태로 선정하였다. 또한 다중의사결정기법인 AHP 기법을 활용하여 선정된 성능평가에 대한 합리적인 가중치를 산정하였다.

폴리스타이렌을 이용한 그래핀 합성 및 산화 붕소가 그래핀 합성에 미치는 영향 (Synthesis of Graphene Using Polystyrene and the Effect of Boron Oxide on the Synthesis of Graphene)

  • 최진석;안성진
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.279-285
    • /
    • 2018
  • Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young's modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately $2000{\Omega}/sq$ to $300{\Omega}/sq$ with an increasing synthesis time for the boron doped graphene.

Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization

  • Nugrahenny, Ayu Tyas Utami;Kim, Jiyoung;Kim, Sang-Kyung;Peck, Dong-Hyun;Yoon, Seong-Ho;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제15권1호
    • /
    • pp.38-44
    • /
    • 2014
  • This paper reports the effect of adding reduced graphene oxide (RGO) as a conductive material to the composition of an electrode for capacitive deionization (CDI), a process to remove salt from water using ionic adsorption and desorption driven by external applied voltage. RGO can be synthesized in an inexpensive way by the reduction and exfoliation of GO, and removing the oxygen-containing groups and recovering a conjugated structure. GO powder can be obtained from the modification of Hummers method and reduced into RGO using a thermal method. The physical and electrochemical characteristics of RGO material were evaluated and its desalination performance was tested with a CDI unit cell with a potentiostat and conductivity meter, by varying the applied voltage and feed rate of the salt solution. The performance of RGO was compared to graphite as a conductive material in a CDI electrode. The result showed RGO can increase the capacitance, reduce the equivalent series resistance, and improve the electrosorption capacity of CDI electrode.

코로나 방전 반응기에서 Carbon Soot 입자의 재비산 (Reentrainment of Carbon Soot Particles in a Corona Discharge Reactor)

  • 이재복;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.1002-1009
    • /
    • 2000
  • Among the various types of diesel after-treatment device, the corona discharge reactor may be considered as a powerful process for trapping submicron particles. But after precipitation on the electrodes occurs, the reentrainment of particles is severe and often causes low or negative precipitation efficiency. Experiments were performed to investigate the effect of an applied voltage on the reentrainment of soot particles from the electrodes. A co-annular laminar diffusion flame burner was used as the soot generator. When a highly negative voltage was applied, exfoliation of the deposited soot particles and an increase in concentration of particles smaller than approximately 150 nm were observed. Turbulence induced from the negative tuft corona and sputtering caused particle reentrainment from the corona wire and from plates as well. Under soot laden combustion gas, a streamer corona often occurred in the wire-cylinder reactor. Because of its transient nature, streamer corona violently increased the concentration of reentrained particles and CO gas.

Enhanced Crystallization of Bisphenol-A Polycarbonate by Organoclay in the Presence of Sulfonated Polystyrene Ionomers

  • Govindaiah, Patakamuri;Lee, Jung-Min;Lee, Seung-Mo;Kim, Jung-Hyun;Subramani, Sankaraiah
    • Macromolecular Research
    • /
    • 제17권11호
    • /
    • pp.842-849
    • /
    • 2009
  • Polycarbonate (PC)/sulfonated polystyrene (SPS) ionomer/organoclay nanocomposites were prepared by a solution intercalation process using the SPS ionomer as a compatibilizer. The effect of an organoclay on the melt crystallization behavior of the ionomer compatibilized PC were examined by differential scanning calorimetry (DSC). The melt crystallization behavior of PC was dependent on the extent of organoclay dispersion. The effect of the ionomer loading and cation size on intercalation/exfoliation efficiency of the organoclay in PC/SPS ionomer matrix was also studied using wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). Dispersion of the organically modified clay in the polymer matrix improved with increasing ionomer compatibilizer loadings and cation size. The SPS ionomer compatibilized PC/organoclay nanocomposite showed enhanced melt crystallization compared to the SPS ionomer/PC blend. Well dispersed organoclay nanocomposites showed better crystallization than the poorly dispersed clay nanocomposites. These nanocomposites also showed better thermal stability than the SPS ionomer/PC blend.

수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구 (A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma)

  • 조성일;정구환
    • 한국표면공학회지
    • /
    • 제54권6호
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

강릉 심곡 해안에 발달한 타포니의 물리·화학적 특성에 기초한 풍화 진행 양상 (An Aspect of Weathering Progress Based on Physical and Chemical Properties of Tafoni in the Simgok Area of Gangneung, Korea)

  • 김유정;김종연;김종욱;한민
    • 한국지형학회지
    • /
    • 제25권3호
    • /
    • pp.19-42
    • /
    • 2018
  • In this study, we surveyed weathering progressing aspect by major elements variation and rock hardness by using XRF analysis, schmidt hammer, and thin section analysis. This observation suggested that the weathering process is likely to develop differently according to microstructural characteristics. R-value on the inside wall are lower than those on the outside. Also, the shadier the environment was, the closer it was to inshore areas, the R-value appeared to be lower. The movement of the elements such as Ca, Na and K shows that feldspar is hydrolyzed and can form salt crystallization like a gypsum or halite when they combine with the elements such as S or Cl. It proved a high CaO, $Na_2O$ and $K_2O$ content on flaking inside wall and rock meal. The exfoliation was mainly observed along the shady backwall and ceiling of tafoni. This helped in predicting the growth of tafoni as well as the direction of its progress.

Fabrication of Two-dimensional MoS2 Films-based Field Effect Transistor for High Mobility Electronic Device Application

  • Joung, DaeHwa;Park, Hyeji;Mun, Jihun;Park, Jonghoo;Kang, Sang-Woo;Kim, TaeWan
    • Applied Science and Convergence Technology
    • /
    • 제26권5호
    • /
    • pp.110-113
    • /
    • 2017
  • The two-dimensional layered $MoS_2$ has high mobility and excellent optical properties, and there has been much research on the methods for using this for next generation electronics. $MoS_2$ is similar to graphene in that there is comparatively weak bonding through Van der Waals covalent bonding in the substrate-$MoS_2$ and $MoS_2-MoS_2$ heteromaterial as well in the layer-by-layer structure. So, on the monatomic level, $MoS_2$ can easily be exfoliated physically or chemically. During the $MoS_2$ field-effect transistor fabrication process of photolithography, when using water, the water infiltrates into the substrate-$MoS_2$ gap, and leads to the problem of a rapid decline in the material's yield. To solve this problem, an epoxy-based, as opposed to a water-based photoresist, was used in the photolithography process. In this research, a hydrophobic $MoS_2$ field effect transistor (FET) was fabricated on a hydrophilic $SiO_2$ substrate via chemical vapor deposition CVD. To solve the problem of $MoS_2$ exfoliation that occurs in water-based photolithography, a PPMA sacrificial layer and SU-8 2002 were used, and a $MoS_2$ film FET was successfully created. To minimize Ohmic contact resistance, rapid thermal annealing was used, and then electronic properties were measured.

삼성분계 그래핀/실리카/EVOH 나노 복합 코팅 필름 (Ternary Phased Graphene/Silica/EVOH Nanocomposites Coating Films)

  • 김성우
    • 접착 및 계면
    • /
    • 제23권3호
    • /
    • pp.94-99
    • /
    • 2022
  • 졸-겔 공정 및 용액 블렌딩 공정을 이용하여 삼성분계(그래핀/실리카/EVOH) 나노 복합 코팅 물질을 제조하였다. SEM 관찰 및 XRD 분석을 통하여 제조된 산화 그래핀의 삽입/박리 구조뿐만 아니라 나노 복합 물질 내에서의 그래핀 나노 판상체와 실리카 입자의 박리 구조 및 분산 상태를 확인하였다. 삼성분계 나노 복합 물질로 코팅된 BOPP의 산소 차단성은 산화 그래핀 및 실리카 입자를 일정 수준의 함량으로 첨가했을 때 이성분계(실리카/EVOH) 나노 복합 코팅 필름에 비해 뚜렷하게 향상되었나, 그 이상의 함량으로 첨가하면 불완전한 박리 및 그래핀 적층체의 분산과 실리카 클러스터의 미세 크랙 발생으로 인하여 차단성이 거의 일정하거나 또는 그 증가 폭이 매우 작은 것으로 나타났다. 또한 나노 복합 코팅 필름의 투명성은 그래핀 함량에 따른 필름의 광투과율을 측정함으로써 확인하였으며, 이러한 결과로부터 식품 포장 필름으로의 적용 가능성을 제시할 수 있었다.