Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.1.038

Preparation and application of reduced graphene oxide as the conductive material for capacitive deionization  

Nugrahenny, Ayu Tyas Utami (Advanced Energy Technology, University of Science and Technology)
Kim, Jiyoung (Advanced Energy Technology, University of Science and Technology)
Kim, Sang-Kyung (Advanced Energy Technology, University of Science and Technology)
Peck, Dong-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research)
Yoon, Seong-Ho (Institute for Materials Chemistry and Engineering, Kyushu University)
Jung, Doo-Hwan (Advanced Energy Technology, University of Science and Technology)
Publication Information
Carbon letters / v.15, no.1, 2014 , pp. 38-44 More about this Journal
Abstract
This paper reports the effect of adding reduced graphene oxide (RGO) as a conductive material to the composition of an electrode for capacitive deionization (CDI), a process to remove salt from water using ionic adsorption and desorption driven by external applied voltage. RGO can be synthesized in an inexpensive way by the reduction and exfoliation of GO, and removing the oxygen-containing groups and recovering a conjugated structure. GO powder can be obtained from the modification of Hummers method and reduced into RGO using a thermal method. The physical and electrochemical characteristics of RGO material were evaluated and its desalination performance was tested with a CDI unit cell with a potentiostat and conductivity meter, by varying the applied voltage and feed rate of the salt solution. The performance of RGO was compared to graphite as a conductive material in a CDI electrode. The result showed RGO can increase the capacitance, reduce the equivalent series resistance, and improve the electrosorption capacity of CDI electrode.
Keywords
reduced graphene oxide; graphite; conductive material; capacitive deionization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Park KK, Lee JB, Park PY, Yoon SW, Moon JS, Eum HM, Lee CW. Development of a carbon sheet electrode for electrosorption desalination. Desalination, 206, 86 (2007). http://dx.doi.org/10.1016/j.desal.2006.04.051.   DOI   ScienceOn
2 Tashima D, Yoshitama H, Otsubo M, Maeno S, Nagasawa Y. Evaluation of electric double layer capacitor using Ketjenblack as conductive nanofiller. Electrochim Acta, 56, 8941 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.124.   DOI   ScienceOn
3 Kotz R, Hahn M, Gallay R. Temperature behavior and impedance fundamentals of supercapacitors. J Power Sources, 154, 550 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.10.048.   DOI   ScienceOn
4 Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 39, 937 (2001). http://dx.doi.org/10.1016/s0008-6223(00)00183-4.   DOI
5 Nadakatti S, Tendulkar M, Kadam M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology. Desalination, 268, 182 (2011). http://dx.doi.org/10.1016/j.desal.2010.10.020.   DOI   ScienceOn
6 Li H, Zou L, Pan L, Sun Z. Novel graphene-like electrodes for capacitive deionization. Environ Sci Technol, 44, 8692 (2010). http://dx.doi.org/10.1021/es101888j.   DOI   ScienceOn
7 Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
8 Pei S, Cheng HM. The reduction of graphene oxide. Carbon, 50, 3210 (2012). http://dx.doi.org/10.1016/j.carbon.2011.11.010.   DOI   ScienceOn
9 Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater, 19, 1987 (2009). http://dx.doi.org/10.1002/adfm.200900167.   DOI   ScienceOn
10 Li H, Pan L, Nie C, Liu Y, Sun Z. Reduced graphene oxide and activated carbon composites for capacitive deionization. J Mater Chem, 22, 15556 (2012). http://dx.doi.org/10.1039/c2jm32207b.   DOI   ScienceOn
11 Choi JY, Choi JH. A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder. J Ind Eng Chem, 16, 401 (2010). http://dx.doi.org/10.1016/j.jiec.2009.08.005.   DOI   ScienceOn
12 Farmer JC, Fix DV, Mack GV, Pekala RW, Poco JF. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J Electrochem Soc, 143, 159 (1996). http://dx.doi.org/10.1149/1.1836402.   DOI
13 Welgemoed TJ, Schutte CF. Capacitive Deionization $Technology^{TM}$: an alternative desalination solution. Desalination, 183, 327 (2005). http://dx.doi.org/10.1016/j.desal.2005.02.054.   DOI   ScienceOn
14 Zou L, Morris G, Qi D. Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination, 225, 329 (2008). http://dx.doi.org/10.1016/j.desal.2007.07.014.   DOI   ScienceOn
15 Yang J, Zou L, Choudhury NR. Ion-selective carbon nanotube electrodes in capacitive deionisation. Electrochim Acta, 91, 11 (2013). http://dx.doi.org/10.1016/j.electacta.2012.12.089.   DOI   ScienceOn
16 Oren Y. Capacitive deionization (CDI) for desalination and water treatment--past, present and future (a review). Desalination, 228, 10 (2008). http://dx.doi.org/10.1016/j.desal.2007.08.005.   DOI   ScienceOn
17 Hou CH, Huang CY. A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124 (2013). http://dx.doi.org/10.1016/j.desal.2012.12.029.   DOI   ScienceOn
18 Oh HJ, Lee JH, Ahn HJ, Jeong Y, Kim YJ, Chi CS. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 515, 220 (2006). http://dx.doi.org/10.1016/j.tsf.2005.12.146.   DOI   ScienceOn
19 Zhan Y, Nie C, Li H, Pan L, Sun Z. Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers. Electrochim Acta, 56, 3164 (2011). http://dx.doi.org/10.1016/j.electacta.2011.01.059.   DOI   ScienceOn
20 Kurzweil P. Electrochemical double-layer capacitors: Carbon material. In: Batteries and supercapacitors, Elsevier, 821 (2009).
21 Qu D, Shi H. Studies of activated carbons used in double-layer capacitors. J Power Sources, 74, 99 (1998). http://dx.doi.org/10.1016/s0378-7753(98)00038-x.   DOI