• Title/Summary/Keyword: Exfoliation

Search Result 396, Processing Time 0.023 seconds

Domain Size and Density in Graphene Grown with Different CVD Growth

  • Gang, Cheong;Jeong, Da-Hui;Nam, Ji-Eun;Lee, Jin-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.264.1-264.1
    • /
    • 2013
  • Graphene is a two-dimensional carbon material whose structure is one-atom-thick planar sheet of sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice. It has drawn significant attention with its distinguished structural and electrical properties. Extremely high mobility and a tunable band gap make graphene potentially useful for innovative approaches to electronics. Although mechanical exfoliation of graphite and decomposition of SiC surfaces upon thermal treatment have been the main method for graphene, they have some limitations in quality and scalability of as-produced graphene films. Solutionphase and solvothermal syntheses of graphene achieved a major improvement for processing, however for device fabrication, a reproducible method such as chemical vapor deposition (CVD) growth yielding high quality films of controlled thickness is required. In this research, we synthesized hexagonal graphene flakes on Cu foils by CVD method and controlled its coverage, density and the size of graphene domains by changing reaction parameters. It is important to control these parameters of graphene growth during synthesis in order to achieve tunable properties and optimized device performance.

  • PDF

Intercalation Behavior of Clay in Polypropylene/Montmorillonite/Wood Nanocomposites (폴리프로필렌/몬모릴로나이트/목분 나노복합체에서의 클레이 박리거동)

  • Kim, Jin Sung;Lee, Sun Young;Yoon, Ho Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.2
    • /
    • pp.93-98
    • /
    • 2010
  • Polypropylene / montmorillonite / wood flour nanocomposites are melt-mixed by using a twin screw extruder. The montmorillonite is intercalated by the wood flour and the basal spacing of montmorillonite is increased with increasing the content of wood flour. The exfoliation constantly occurs by adding more than 10 wt.% of maleic anhydride-grafted polypropylene as the compatibilizer, which is used for improving the interfacial adhesion between matrix and filler. Also, the maleic anhydride-grafted polypropylene enhances the mechanical properties of the nanocomposites.

  • PDF

Consideration of primary molar's root and root canal for pulpectomy treatment (치수절제술 시 고려해야 할 유구치 치근과 근관)

  • MAH, YON-JOO
    • The Journal of the Korean dental association
    • /
    • v.57 no.8
    • /
    • pp.474-479
    • /
    • 2019
  • The purpose of the pulp treatment is to make the function of the primary molar in the oral cavity possible for as long as possible until the exfoliation of the tooth or the development of the occlusion is as long as possible. The pulpectomy is a relatively common procedure for the pediatric dentist in the clinic with dental care of the children nowadays. Primary molar is morphologically more susceptible to dental caries than permanent tooth, and the dental pulp treatment is frequently performed. Furthermore, unlike permanent teeth, the root canal has a large degree of curvature and morphological diversity and complexity, careful consideration is needed. Therefore, it is very important to comprehensively understand the morphological characteristics and diversity of the root and root canals for the successful pulp treatment of the primary molars.

  • PDF

Black Phosphorus Nano Flake Lithium Ion Battery Using Electrophoretic Deposition (전기영동 증착법을 이용한 Black Phosphorus Nano Flake 리튬이온 배터리)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.252-255
    • /
    • 2019
  • Black phosphorus (BP) is a potential candidate for an anode in lithium ion batteries due to its high theoretical capacity and the large interlayer spacing in the monolayered phosphorene form, allowing for lithium intercalation/deintercalation. In this study, large-scale exfoliation of bulk BP was accomplished using a solution of NaOH and N-methyl-2-pyrrolidone (NMP), yielding phosphorene, which can be assembled into nanoflakes using electrophoretic deposition (EPD). Through the systematic addition of NaOH and subsequent sonication, BP nanoflakes were obtained in high yields by EPD, allowing for the integration of these nanoflakes into an anode in the film state. Anodes with a charge/discharge capacity of 172 mAh/g at a rate of 200 mA/g were obtained, which are promising for battery applications through various post-film treatments.

A Brief Review on 2-Dimensional Dielectric Nanosheets (이차원 유전체 나노시트의 개발 동향)

  • Yim, Haena;Choi, Ji-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Two-dimensional materials have shown a great promise for the next-generation electronic materials due to their unique optical, physical, and chemical properties that are distinct from their bulk counterparts. Their atomic-level thickness, the feature for flexible tenability, and exposed huge surface allow various approaches for high-performance nanoscale devices. Especially, this review highlights the recent progress on two-dimensional dielectric nanosheets, which are obtained by cheap and massproducible solution-based exfoliation process, accompanied by the preparation methods, various deposition methods, and the characteristics of devices using a dielectric nanosheet thin films. We also present a perspective on the advantages offered by this two-dimensional dielectric nanosheets for the upcoming future nanoelectonics.

Study on the preparation of electrochemical exfoliated graphene/Fe oxide compound according to synthetic conditions (합성 조건 변화에 따른 전기화학적 박리 그래핀/철 산화물 복합체 제조 연구)

  • Park, Eunjin;Kim, Yong-Tae;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • With the growing interest in energy storage and conversion systems including secondary batteries, capacitors, and water electrolysis, various electrode materials are being developed to improve the energy efficiency. Among them, graphene is regarded as one of the promising candidates owing to its exceptional properties - large surface area, and excellent electrical conductivity. Herein, we report a facile one-step electrochemical approach to synthesize exfoliated graphene/Fe oxide compound. The effect of experimental conditions - the types of applied voltage, kinds of counter electrodes, acidity of electrolyte on the synthesis of graphene/Fe oxide compound is investigated.

Integer and fractional quantum Hall effect in graphene heterostructure

  • Youngwook Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • The study of two-dimensional electron systems with extraordinarily low levels of disorder was, for a long time, the exclusive privilege of the epitaxial thin film research community. However, the successful isolation of graphene by mechanical exfoliation has truly disrupted this field. Furthermore, the assembly of heterostructures consisting of several layers of different 2D materials in arbitrary order by exploiting van der Waals forces has been a game-changer in the field of low-dimensional physics. This technique can be generalized to the large class of strictly 2D materials and offers unprecedented parameters to play with in order to tune electronic and other properties. It has led to a paradigm shift in the field of 2D condensed matter physics with bright prospects. In this review article, we discuss three device fabrication techniques towards high mobility devices: suspended structures, dry transfer, and pick-up transfer methods. We also address state-of-the-art device structures, which are fabricated by the van der Waals pick-up transfer method. Finally, we briefly introduce correlated ground states in the fractional quantum Hall regime.

Enhancing Thermal Conductivity in Epoxy Composites with Functionalized Boron Nitride Nanosheets

  • Yang Soo Kim;Ik-Tae Im;Jong Seok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.503-510
    • /
    • 2023
  • This comprehensive study delves into the intricate process of exfoliating and functionalizing boron nitride nanosheets (BNNSs) extracted from hexagonal boron nitride (h-BN), and meticulously explores their potential application within epoxy composites. The extensive research methodology encompasses a sequence of treatments involving hydrothermal and sonication processes aimed at augmenting the dispersion of BNNSs in solvents. Leveraging advanced analytical techniques such as Raman spectroscopy, X-ray diffraction, and FTIR spectroscopy, the study rigorously analyzes a spectrum of changes in the BNNS's properties, including layer count variations, interlayer interactions, crystal structure modifications, and the introduction of functional groups. The research also rigorously evaluates the impact of integrating BNNSs, specifically glycidyl methacrylate (GMA)-functionalized BNNSs, on the thermal conductivity of epoxy composites. The conclusive findings exhibit notable enhancements in thermal properties, predominantly attributed to the enhanced dispersion of fillers and enhanced interactions within the epoxy matrix. This pioneering work illuminates the wide potential of functionalized BNNSs for significantly enhancing the thermal conductivity of epoxy composites, paving the way for advanced materials engineering and practical applications.

Preparation and Properties of 2D Materials

  • Byungjin Cho;Yonghun Kim
    • Nanomaterials
    • /
    • v.10 no.4
    • /
    • pp.764-767
    • /
    • 2020
  • Since the great success of graphene, atomically thin layered nanomaterials-called two-dimensional (2D) materials-have attracted tremendous attention due to their extraordinary physical properties. In particular, van der Waals heterostructured architectures based on a few 2D materials, named atomic scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high performance, shifting the research paradigm in materials science and engineering [1]. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. In particular, this Special Issue includes the recent advances in unique preparation methods, such as exfoliation-based synthesis and the vacuum-based deposition of diverse 2D materials, as well as their device applications based on their interesting physical properties. This editorial consists of the following two sections: Preparation Methods of 2D Materials and Properties of 2D Materials.

Lithological Characteristics and Deterioration Diagnosis of Dosolammaaebulsang (Rock-carved Buddha Statue of Dosolam) in the Seonunsa Temple, Gochang, Korea (고창 선운사 도솔암마애불의 암석학적 특성과 손상도 진단)

  • Park, Sung-Mi;Ryu, Keong-Seok;Choi, Hee-Soo;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.101-114
    • /
    • 2011
  • The rock-carved Buddha statue at Dosolam (Korea Treasure No. 1200) of the Seonunsa temple in Gochang is unique style sculptured on natural rock cliff of 13.0m height. The Buddha statue is composed of volcanic complex with tuff, dacitic tuff breccia, tuff bereccia and lithic tuff. Especially, the Buddha statue is characterized by hydrothermal alteration and fragmentation on the upper and lower part. As a result of damage diagnosis, exfoliation and detachment of physical weathering are high of 11.3% and 9.3%, respectively. Infrared thermography analysis, exfoliation and micro-cracks occurred in the measuring parts that have not been confirmed by naked eyes. Chemical index of alteration and weathering potential index of host rock for the Buddha statue are 55.16 to 64.01 and 6.14 to 9.92 which are represented within highly weathering degree. In surface, dark black, reddish brown and white discoloration are observed prominently in the lower. Brown discoloration 6.9% is highest. According to the P-XRF measurements, high concentration of Fe in common, in part of dark black discoloration was Mn, white and brown discoloration in part of S and Ca content were higher. Biological weathering that yellowish brown and dark gray crustoes lichenes appeared by 20.8% and 13.3%, respectively. Therefore, comprehensive deterioration rate of Buddha statue show physical damage by 21.2%, discoloration for inorganic contaminants by 10.8% and biological damage by 39.4%. Ultrasonic velocity measurement carried out of Buddha statue on the surface by 555 points. Measured value of ultrasonic velocity was about 2,273m/s(1,067 to 3,215m/s, and weathering coefficient is 0.5(0.4 to 0.8) that progress on MW(moderately weathered) to HW(highly weathered) grade of rocks.