DOI QR코드

DOI QR Code

Study on the preparation of electrochemical exfoliated graphene/Fe oxide compound according to synthetic conditions

합성 조건 변화에 따른 전기화학적 박리 그래핀/철 산화물 복합체 제조 연구

  • Park, Eunjin (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 박은진 (인하대학교 화학.화학공학 융합학과) ;
  • 김용태 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2022.04.15
  • Accepted : 2022.04.25
  • Published : 2022.04.30

Abstract

With the growing interest in energy storage and conversion systems including secondary batteries, capacitors, and water electrolysis, various electrode materials are being developed to improve the energy efficiency. Among them, graphene is regarded as one of the promising candidates owing to its exceptional properties - large surface area, and excellent electrical conductivity. Herein, we report a facile one-step electrochemical approach to synthesize exfoliated graphene/Fe oxide compound. The effect of experimental conditions - the types of applied voltage, kinds of counter electrodes, acidity of electrolyte on the synthesis of graphene/Fe oxide compound is investigated.

Keywords

References

  1. D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7 (2015) 19-29. https://doi.org/10.1038/nchem.2085
  2. A. Muzaffar, M. B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications, Renew. Sust. Energ. Rev., 101 (2019) 123-145. https://doi.org/10.1016/j.rser.2018.10.026
  3. X. Zou, Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting, Chem. Soc. Rev., 44 (2015) 5148-5180. https://doi.org/10.1039/C4CS00448E
  4. Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials, Energy Environ. Sci., 4 (2011) 1113-1132. https://doi.org/10.1039/c0ee00683a
  5. V. Georgakilas, J. N. Tiwari, K. C. Kemp, J. A. Perman, A. B. Bourlinos, K. S. Kim, R. Zboril, Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications, Chem. Rev., 116 (2016) 5464-5519. https://doi.org/10.1021/acs.chemrev.5b00620
  6. Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, Carbon-based supercapacitors produced by activation of graphene, Science, 332 (2011) 1537-1541. https://doi.org/10.1126/science.1200770
  7. W. J. Jeong, Y. C. Oh, S. H. Kim, Electrochemical property of the composite eectrode with graphene balls and gaphene oxide for supercapacitor, J. Kor. Inst. Surf. Eng., 53 (2020) 213-218. https://doi.org/10.5695/JKISE.2020.53.5.213
  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. e. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. https://doi.org/10.1126/science.1102896
  9. B. J. Lee, G. H. Jeong, Graphene doping by ammonia plasma surface treatment, J. Kor. Inst. Surf. Eng., 48 (2015) 163-168. https://doi.org/10.5695/JKISE.2015.48.4.163
  10. B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Graphenebased composites for electrochemical energy storage, Energy Storage Mater., 24 (2020) 22-51. https://doi.org/10.1016/j.ensm.2019.08.004
  11. K. Parvez, Z. S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Muullen, Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Am. Chem. Soc., 136 (2014) 6083-6091. https://doi.org/10.1021/ja5017156
  12. K. Chen, D. Xue, Preparation of colloidal graphene in quantity by electrochemical exfoliation, J. Colloid Interface Sci., 436 (2014) 41-46. https://doi.org/10.1016/j.jcis.2014.08.057
  13. J. Azadmanjiri, V. K. Srivastava, P. Kumar, J. Wang, A. Yu, Graphene-supported 2D transition metal oxide heterostructures, J. Mater. Chem. A, 6 (2018) 13509-13537. https://doi.org/10.1039/C8TA03404D
  14. A. M. Khattak, H. Yin, Z. A. Ghazi, B. Liang, A. Iqbal, N. A. Khan, Y. Gao, L. Li, Z. Tang, Three dimensional iron oxide/ graphene aerogel hybrids as all-solidstate flexible supercapacitor electrodes, RSC Adv., 6 (2016) 58994-59000. https://doi.org/10.1039/C6RA11106H
  15. Z. S. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li, H. M. Cheng, Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance, ACS Nano, 4 (2010) 3187-3194. https://doi.org/10.1021/nn100740x
  16. H. Wang, J. T. Robinson, G. Diankov, H. Dai, Nanocrystal growth on graphene with various degrees of oxidation, J. Am. Chem. Soc., 132 (2010) 3270-3271. https://doi.org/10.1021/ja100329d
  17. H. Fei, Z. Peng, L. Li, Y. Yang, W. Lu, E. L. Samuel, X. Fan, J. M. Tour, Preparation of carbon-coated iron oxide nanoparticles dispersed on graphene sheets and applications as advanced anode materials for lithium-ion batteries, Nano Res., 7 (2014) 502-510. https://doi.org/10.1007/s12274-014-0416-0
  18. K. Chen, D. Xue, S. Komarneni, Nanoclay assisted electrochemical exfoliation of pencil core to high conductive graphene thin-film electrode, J. Colloid Interface Sci., 487 (2017) 156-161. https://doi.org/10.1016/j.jcis.2016.10.028
  19. M. Hofmann, W. Y. Chiang, T. D. Nguyen, Y. P. Hsieh, Controlling the properties of graphene produced by electrochemical exfoliation, Nanotechnology, 26 (2015) 335607. https://doi.org/10.1088/0957-4484/26/33/335607